博碩士論文 104326006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.138.101.95
姓名 陳詠菁(Yong-Jing Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 Shewanella oneidensis MR-1 於水相均質系統中還原二價汞之機制探討
(Endogenous flavins dominate extracellular reduction of Hg(II) to Hg(0) by Shewanella oneidensis MR-1 in aqueous phase)
相關論文
★ 埔心溪補助灌溉水水質與渠道底泥重金屬含量調查分析★ 桃園航空城三所國小周界大氣PAHs濃度探討
★ 無塵室揮發性有機氣體異味調查探討 -以某晶圓級封裝廠為例★ 利用土壤植栽與固相微萃取探討植作對非離子態有機污染物之吸收模式
★ 零價鐵與硫酸鹽的添加對於水田根圈環境汞 之生物有效性與菌相組成的影響★ 以紫外光/二氧化鈦光催化降解程序去除水溶液相內分泌干擾物質壬基苯酚之研究
★ 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響★ 水溶液相中多壁奈米碳管分散懸浮與抑菌效果之相關性探討
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用-以北投垃圾焚化爐為例★ 以淨水污泥灰及廢玻璃為矽鋁源合成MCM-41並應用於重鉻酸鹽吸附之研究
★ 鄰近汞排放源之水稻田受現地地質化學與微生物影響之甲基汞生成與累積作用 -以台中火力發電廠為例★ 細胞固定化影響厭氧氨氧化程序脫氮效能之研究
★ 藉由非抗性模式細菌對鎘之攝取機制探討量子點的生態毒性潛勢★ 利用生物性聚合物交聯所成穿透式網絡結構穩定污染土壤中之重金屬(鉛、鉻、鎘)
★ 蚯蚓處理加速堆肥廚餘去化可行性評估-以臺北市為例★ 氣相層析三段四極柱串聯質譜儀應用於多溴二苯醚環境樣品之分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 部分異化性金屬還原菌(dissimilatory metal-reducing bacteria, DMRB)如Shewanella及Geobacter等可在低汞濃度下進行與mer無關的生物性汞直接還原作用,但其背後運轉的機制截至目前為止仍未確認。由於DMRB是沈積物系統(即底泥與地下含水層環境)中掌控污染物質移動與轉化最重要的微生物族群之一,因此深入了解此還原作用的機制層對於未來的相關系統的環境管理與整治將有所助益。有鑑於此,本研究以 Shewanella的Mtr (即metal-reducing)胞外呼吸作用的電子傳遞途徑為模型,利用基因圖譜已全面解密的S. oneidensis MR-1野生菌株,以及分別剔除其細胞外膜表面的多血紅素細胞色素蛋白(即MtrA、MtrB、MtrC及OmcA)的生成基因與黃素類化合物(即flavins)的分泌基因而得的突變菌為試驗模式生物mtrA、mtrB、mtrC、omcA、mtrC/omcA與bfe,進行低汞濃度的暴露試驗,以測試「Shewanella菌屬可利用胞外電子傳遞時所需的外膜細胞色素蛋白將Hg(II)還原成Hg(0),且此還原效率可因所分泌的內源性黃素類化合物的協助而增強」之假說與機制。實驗結果證實S. oneidensis MR-1的細胞外膜色素蛋白雖可將胞外水溶液中的Hg(II)還原為Hg(0),但其反應效率與程度遠不及內源性的黃素類化合物的作用;且當MR-1與外源性的電子梭物質AQDS一起培養時,Hg(II)的還原作用只在厭氧狀態且AQDS達一定濃度下才較為顯著。這些結果說明Shewanella在進行胞外的重金屬轉化時,主要依賴的還是自身所分泌的黃素類電子穿梭物;此外,當環境中存在著具有微生物可利用性的氧化還原活躍介質時,可能會更進一步影響汞在環境中的形態與分佈。
摘要(英) Shewanella oneidensis MR-1 is an important model strain of dissimilatory metal-reducing bacteria (DMRB) that has been shown to reduce low-levels ( 0.3 M) of aqueous inorganic Hg(II) under both aerobic and anaerobic conditions via pathways independent of mer activities. Yet, the electron transport mechanism that underpins this Hg redox transformation process is unclear. Given that DMRB like Shewanella are prevalent in soil and sedimentary environments, as well as that Hg(II) reduction by DMRB may be a critical process in these settings that controls the Hg content in the system profile, a better understanding of the processes modulated by DMRB that govern the fate and transport of Hg in the environment is crucial for future environmental management and remediation efforts. In this study, by using MR-1 and its mutant strains lacking the gene(s) encoding the protein(s) associated with the Mtr respiratory pathway, including ∆omcA, ∆mtrA, ∆mtrB, ∆mtrC and ∆omcA/∆mtrC, and the mutant that lacks the primary bacterial FAD exporter (i.e., ∆bfe), laboratory incubation experiments were carried out to test the hypothesis that while the outer-membrane multi-heme cytochromes of S. oneidensis MR-1 may directly involve in the reduction of Hg(II) to Hg(0), this Hg redox transformation process is facilitated in the presence of endogenous (i.e., flavins) and exogenous (i.e., AQDS) electron shuttles. Results show that (i) Hg redox chemistry in the MR-1 culture was a function of Hg-to-cell ratios, suggesting that this (ratio) factor may need to consider when assessing the spread and impact of Hg in the aquifer; (ii) although outer-membrane cytochromes directly participated in the reduction of Hg(II) of Hg(0), endogenous flavins might play a more important role in this process; (iii) the importance of electron shuttling in the conversion of Hg(II) to Hg(0) by MR-1 was further supported by the results of short-term incubations showing that synthetic flavins and AQDS significantly facilitated Hg(II) reduction with an effect of riboflavin > FMN > AQDS; (iv) in the absence of terminal electron acceptors, MR-1 not only remained viable but also maintained the capacity of Hg(II) reduction after incubation with externally provided electron shuttles for 12 hr.
關鍵字(中) ★ 異化性金屬還原菌
★ 胞外電子傳遞途徑
★ 多血紅素色素蛋白
★ 黃素類化合物
★ 二價汞還原
關鍵字(英) ★ dissimilatory metal-reducing bacteria
★ extracellular electron transport
★ multi-heme cytochromes protein
★ flavin compounds
★ Hg(II) reduction
論文目次 摘要 I
Abstract III
致謝 V
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 全球汞的宿命及傳輸 5
2-2 汞的毒性及危害 6
2-3 地下水相關案例及潛在因素 7
2-4 生物地球化學反應 9
2-4-1 非生物性汞還原作用 10
2-4-2 生物性汞還原作用 11
2-5 異化性金屬還原菌 14
2-5-1 胞外電子傳遞途徑 15
2-5-2 Shewanella oneidensis MR-1之Mtr電子傳遞途徑 17
第三章 研究方法 21
3-1 實驗架構 21
3-2 實驗藥品及配製 22
3-3 模式生物及菌株活化 24
3-4 Shewanella oneidensis MR-1之培養液製備 25
3-5 化學物種組成模擬軟體 27
3-6 平板技術及光學密度曲線法 28
3-7 總汞回收率測試 28
3-8 汞暴露實驗 30
3-8-1 生物性汞還原試驗 30
3-8-2 過濾試驗 31
3-9 總汞分析 31
第四章 結果與討論 35
4-1 吹氣捕捉系統回收率試驗 35
4-2 生物性汞暴露試驗 37
4-3 水化學物種組成之汞暴露試驗 42
4-3-1 不同培養液之汞還原反應 43
4-3-2 過濾試驗 49
4-4 突變菌之汞暴露試驗 52
4-4-1 野生型MR-1及△bfe 52
4-4-2 Mtr 電子傳遞途徑 (△mtrC及△omcA) 55
4-4-3 Mtr電子傳遞途徑 (△mtrA及△mtrB) 58
4-5 內源/外源性電子穿梭物之汞暴露試驗 61
4-5-1 MR-1之內源/外源性電子穿梭物汞暴露試驗 62
4-5-2 △bfe 之化學性電子穿梭物汞暴露試驗 67
4-5-3 無添加電子接受者之汞暴露試驗 69
4-6 環境意義 72
第五章 結論與建議 75
5-1 結論 75
5-2 建議 76
參考文獻 79
參考文獻 Alberts, J.J., Schindler, J.E., Miller, R.W., Nutter, D.E., 1974. Elemental mercury evolution mediated by humic acid. Science 184, 895-897.
Allard, B., Arsenie, I., 1991. Abiotic reduction of mercury by humic substances in aquatic system—an important process for the mercury cycle. Water Air & Soil Pollution 56, 457-464.
Amyot, M., McQueen, D.J., Mierle, G., Lean, D.R., 1994. Sunlight-induced formation of dissolved gaseous mercury in lake waters. Environmental science & technology 28, 2366-2371.
Amyot, M., Mierle, G., Lean, D., Mc Queen, D.J., 1997. Effect of solar radiation on the formation of dissolved gaseous mercury in temperate lakes. Geochimica et Cosmochimica Acta 61, 975-987.
Assessment, U.G.M., 2013. Sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland 42.
Aulenta, F., Di Maio, V., Ferri, T., Majone, M., 2010. The humic acid analogue antraquinone-2, 6-disulfonate (AQDS) serves as an electron shuttle in the electricity-driven microbial dechlorination of trichloroethene to cis-dichloroethene. Bioresource technology 101, 9728-9733.
Barkay, T., Kritee, K., Boyd, E., Geesey, G., 2010. A thermophilic bacterial origin and subsequent constraints by redox, light and salinity on the evolution of the microbial mercuric reductase. Environmental Microbiology 12, 2904-2917.
Barkay, T., Miller, S.M., Summers, A.O., 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS microbiology reviews 27, 355-384.
Barkay, T., Turner, R.R., Rasmussen, L.D., Kelly, C.A., Rudd, J.W., 1998. Luminescence facilitated detection of bioavailable mercury in natural waters, Bioluminescence Methods and Protocols. Springer, pp. 231-246.
Barnes, H.L., 1997. Geochemistry of hydrothermal ore deposits. John Wiley & Sons.
Barringer, J.L., Szabo, Z., 2006. Overview of investigations into mercury in ground water, soils, and septage, new jersey coastal plain. Water, Air, and Soil Pollution 175, 193-221.
Barringer, J.L., Szabo, Z., Reilly, P.A., 2013. Occurrence and mobility of mercury in groundwater: Chapter 5.
Bauer, M., Heitmann, T., Macalady, D.L., Blodau, C., 2007. Electron transfer capacities and reaction kinetics of peat dissolved organic matter. Environmental science & technology 41, 139-145.
Bird, L.J., Bonnefoy, V., Newman, D.K., 2011. Bioenergetic challenges of microbial iron metabolisms. Trends in microbiology 19, 330-340.
Bond, D.R., Lovley, D.R., 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and environmental microbiology 69, 1548-1555.
Breuer, M., Rosso, K.M., Blumberger, J., Butt, J.N., 2015. Multi-haem cytochromes in Shewanella oneidensis MR-1: structures, functions and opportunities. Journal of the Royal Society Interface 12, 20141117.
Brutinel, E.D., Gralnick, J.A., 2012. Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella. Applied Microbiology and Biotechnology 93, 41-48.
Brutinel, E.D., Gralnick, J.A., 2013. On the role of endogenous electron shuttles in extracellular electron transfer, Microbial Metal Respiration. Springer, pp. 83-105.
Charlet, L., Bosbach, D., Peretyashko, T., 2002. Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe (II): an AFM study. Chemical Geology 190, 303-319.
Clarkson, T.W., Magos, L., Myers, G.J., 2003. The toxicology of mercury—current exposures and clinical manifestations. New England Journal of Medicine 349, 1731-1737.
Coursolle, D., Baron, D.B., Bond, D.R., Gralnick, J.A., 2010. The Mtr respiratory pathway is essential for reducing flavins and electrodes in Shewanella oneidensis. Journal of Bacteriology 192, 467-474.
Coursolle, D., Gralnick, J.A., 2010. Modularity of the Mtr respiratory pathway of Shewanella oneidensis strain MR‐1. Molecular microbiology 77, 995-1008.
Demers, J.D., Driscoll, C.T., Fahey, T.J., Yavitt, J.B., 2007. Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecological Applications 17, 1341-1351.
Driscoll, C.T., Mason, R.P., Chan, H.M., Jacob, D.J., Pirrone, N., 2013. Mercury as a global pollutant: sources, pathways, and effects. Environmental science & technology 47, 4967-4983.
Edwards, M.J., Baiden, N.A., Johs, A., Tomanicek, S.J., Liang, L., Shi, L., Fredrickson, J.K., Zachara, J.M., Gates, A.J., Butt, J.N., 2014. The X‐ray crystal structure of Shewanella oneidensis OmcA reveals new insight at the microbe–mineral interface. FEBS letters 588, 1886-1890.
Fitzgerald, W., Lamborg, C., 2005. in the Environment. Environmental Geochemistry 9, 107.
Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., Nealson, K.H., Osterman, A.L., Pinchuk, G., Reed, J.L., 2008. Towards environmental systems biology of Shewanella. Nature Reviews Microbiology 6, 592.
Friberg, L., Vostal, J., 1972. Mercury in the environment: A toxicological and epidemiological appraisal.
Gorby, Y.A., Yanina, S., McLean, J.S., Rosso, K.M., Moyles, D., Dohnalkova, A., Beveridge, T.J., Chang, I.S., Kim, B.H., Kim, K.S., 2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proceedings of the National Academy of Sciences 103, 11358-11363.
Gralnick, J.A., Newman, D.K., 2007. Extracellular respiration. Molecular microbiology 65, 1-11.
Grassi, S., Netti, R., 2000. Sea water intrusion and mercury pollution of some coastal aquifers in the province of Grosseto (Southern Tuscany—Italy). Journal of Hydrology 237, 198-211.
Gu, B., Bian, Y., Miller, C.L., Dong, W., Jiang, X., Liang, L., 2011. Mercury reduction and complexation by natural organic matter in anoxic environments. Proceedings of the National Academy of Sciences, 201008747.
Hartshorne, R.S., Reardon, C.L., Ross, D., Nuester, J., Clarke, T.A., Gates, A.J., Mills, P.C., Fredrickson, J.K., Zachara, J.M., Shi, L., 2009. Characterization of an electron conduit between bacteria and the extracellular environment. Proceedings of the National Academy of Sciences 106, 22169-22174.
Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., 2002. Genome sequence of the dissimilatory metal ion–reducing bacterium Shewanella oneidensis. Nature biotechnology 20, 1118.
Hsu-Kim, H., Kucharzyk, K.H., Zhang, T., Deshusses, M.A., 2013. Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environmental science & technology 47, 2441-2456.
Hu, H., Lin, H., Zheng, W., Rao, B., Feng, X., Liang, L., Elias, D.A., Gu, B., 2013. Mercury reduction and cell-surface adsorption by Geobacter sulfurreducens PCA. Environmental science & technology 47, 10922-10930.
Jiang, J., Kappler, A., 2008. Kinetics of microbial and chemical reduction of humic substances: implications for electron shuttling. Environmental science & technology 42, 3563-3569.
Khatiwada, N., Takizawa, S., Tran, T., Inoue, M., 2002. Groundwater contamination assessment for sustainable water supply in Kathmandu Valley, Nepal. Water Science and Technology 46, 147-154.
Kim, K.-H., Kabir, E., Jahan, S.A., 2016. A review on the distribution of Hg in the environment and its human health impacts. Journal of hazardous materials 306, 376-385.
Kotloski, N.J., Gralnick, J.A., 2013. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio 4, e00553-00512.
Lamborg, C.H., Hammerschmidt, C.R., Bowman, K.L., Swarr, G.J., Munson, K.M., Ohnemus, D.C., Lam, P.J., Heimbürger, L.-E., Rijkenberg, M.J., Saito, M.A., 2014. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature 512, 65.
Lehnherr, I., 2014. Methylmercury biogeochemistry: a review with special reference to Arctic aquatic ecosystems. Environmental Reviews 22, 229-243.
Lies, D.P., Hernandez, M.E., Kappler, A., Mielke, R.E., Gralnick, J.A., Newman, D.K., 2005. Shewanella oneidensis MR-1 uses overlapping pathways for iron reduction at a distance and by direct contact under conditions relevant for biofilms. Applied and Environmental Microbiology 71, 4414-4426.
Lin, C.C., Yee, N., Barkay, T., 2012. Microbial transformations in the mercury cycle. Environmental chemistry and toxicology of mercury, 155-191.
Liu, Y., Wang, Z., Liu, J., Levar, C., Edwards, M.J., Babauta, J.T., Kennedy, D.W., Shi, Z., Beyenal, H., Bond, D.R., 2014. A trans‐outer membrane porin‐cytochrome protein complex for extracellular electron transfer by G eobacter sulfurreducens PCA. Environmental microbiology reports 6, 776-785.
Lloyd, J.R., 2003. Microbial reduction of metals and radionuclides. FEMS microbiology reviews 27, 411-425.
Lockwood, R.A., Chen, K.Y., 1974. Adsorption of Hg (II) by ferric hydroxide. Environmental letters 6, 151-166.
Lovley, D.R., 2006. Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology 4, 497.
Lovley, D.R., Kashefi, K., Vargas, M., Tor, J.M., Blunt-Harris, E.L., 2000. Reduction of humic substances and Fe (III) by hyperthermophilic microorganisms. Chemical Geology 169, 289-298.
Marritt, S.J., McMillan, D.G., Shi, L., Fredrickson, J.K., Zachara, J.M., Richardson, D.J., Jeuken, L.J., Butt, J.N., 2012. The roles of CymA in support of the respiratory flexibility of Shewanella oneidensis MR-1. Portland Press Limited.
Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A., Bond, D.R., 2008. Shewanella secretes flavins that mediate extracellular electron transfer. Proceedings of the National Academy of Sciences 105, 3968-3973.
Mason, R., Reinfelder, J., Morel, F., 1995. Bioaccumulation of mercury and methylmercury. Water, Air, and Soil Pollution 80, 915-921.
Mason, R.P., Fitzgerald, W.F., Morel, F.M., 1994. The biogeochemical cycling of elemental mercury: anthropogenic influences. Geochimica et Cosmochimica Acta 58, 3191-3198.
Matthiessen, A., 1998. Reduction of divalent mercury by humic substances—kinetic and quantitative aspects. Science of the total environment 213, 177-183.
Meitl, L.A., Eggleston, C.M., Colberg, P.J., Khare, N., Reardon, C.L., Shi, L., 2009. Electrochemical interaction of Shewanella oneidensis MR-1 and its outer membrane cytochromes OmcA and MtrC with hematite electrodes. Geochimica et Cosmochimica Acta 73, 5292-5307.
Meng, B., Feng, X., Qiu, G., Liang, P., Li, P., Chen, C., Shang, L., 2011. The process of methylmercury accumulation in rice (Oryza sativa L.). Environmental science & technology 45, 2711-2717.
Morel, F.M., Kraepiel, A.M., Amyot, M., 1998. The chemical cycle and bioaccumulation of mercury. Annual review of ecology and systematics 29, 543-566.
Myers, C.R., Nealson, K.H., 1988. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240, 1319-1321.
Myers, C.R., Nealson, K.H., 1990. Respiration-linked proton translocation coupled to anaerobic reduction of manganese (IV) and iron (III) in Shewanella putrefaciens MR-1. Journal of Bacteriology 172, 6232-6238.
Nealson, K.H., Myers, C.R., 1992. Microbial reduction of manganese and iron: new approaches to carbon cycling. Applied and environmental microbiology 58, 439.
Nealson, K.H., Scott, J., 2006. Ecophysiology of the genus Shewanella, The prokaryotes. Springer, pp. 1133-1151.
Newman, D.K., Kolter, R., 2000. A role for excreted quinones in extracellular electron transfer. Nature 405, 94.
Newton, D., Ellis, R., Paulsen, G., 1976. Effect of pH and Complex Formation on Mercury (II) Adsorption by Bentonite 1. Journal of Environmental Quality 5, 251-254.
Nishio, K., Nakamura, R., Lin, X., Konno, T., Ishihara, K., Nakanishi, S., Hashimoto, K., 2013. Extracellular electron transfer across bacterial cell membranes via a cytocompatible redox‐active polymer. ChemPhysChem 14, 2159-2163.
Obrist, D., Johnson, D., Lindberg, S., Luo, Y., Hararuk, O., Bracho, R., Battles, J., Dail, D., Edmonds, R., Monson, R., 2011. Mercury distribution across 14 US forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils. Environmental science & technology 45, 3974-3981.
Pirbadian, S., Barchinger, S.E., Leung, K.M., Byun, H.S., Jangir, Y., Bouhenni, R.A., Reed, S.B., Romine, M.F., Saffarini, D.A., Shi, L., 2014. Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proceedings of the National Academy of Sciences 111, 12883-12888.
Protano, G., Riccobono, F., Sabatini, G., 2000. Does salt water intrusion constitute a mercury contamination risk for coastal fresh water aquifers? Environmental Pollution 110, 451-458.
Reguera, G., McCarthy, K.D., Mehta, T., Nicoll, J.S., Tuominen, M.T., Lovley, D.R., 2005. Extracellular electron transfer via microbial nanowires. Nature 435, 1098.
Richter, K., Schicklberger, M., Gescher, J., 2012. Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied and Environmental Microbiology 78, 913-921.
Ross, D.E., Ruebush, S.S., Brantley, S.L., Hartshorne, R.S., Clarke, T.A., Richardson, D.J., Tien, M., 2007. Characterization of protein-protein interactions involved in iron reduction by Shewanella oneidensis MR-1. Applied and environmental microbiology 73, 5797-5808.
Scott, D.T., McKnight, D.M., Blunt-Harris, E.L., Kolesar, S.E., Lovley, D.R., 1998. Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Environmental science & technology 32, 2984-2989.
Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H.-Q., Fredrickson, J.K., 2016. Extracellular electron transfer mechanisms between microorganisms and minerals. Nature Reviews Microbiology 14, 651.
Shi, L., Squier, T.C., Zachara, J.M., Fredrickson, J.K., 2007. Respiration of metal (hydr) oxides by Shewanella and Geobacter: a key role for multihaem c‐type cytochromes. Molecular microbiology 65, 12-20.
Sidle, W., 1993. Naturally occurring mercury contamination in a pristine environment? Environmental Geology 21, 42-50.
Smith‐Downey, N.V., Sunderland, E.M., Jacob, D.J., 2010. Anthropogenic impacts on global storage and emissions of mercury from terrestrial soils: Insights from a new global model. Journal of Geophysical Research: Biogeosciences 115.
Szczuka, A., Morel, F.M., Schaefer, J.K., 2015. Effect of thiols, zinc, and redox conditions on Hg uptake in Shewanella oneidensis. Environmental science & technology 49, 7432-7438.
Von Canstein, H., Ogawa, J., Shimizu, S., Lloyd, J.R., 2008. Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer. Applied and Environmental Microbiology 74, 615-623.
Wang, Y., Freedman, Z., Lu-Irving, P., Kaletsky, R., Barkay, T., 2009. An initial characterization of the mercury resistance (mer) system of the thermophilic bacterium Thermus thermophilus HB27. FEMS microbiology ecology 67, 118-129.
Wang, Y., Kern, S.E., Newman, D.K., 2010. Endogenous phenazine antibiotics promote anaerobic survival of Pseudomonas aeruginosa via extracellular electron transfer. Journal of bacteriology 192, 365-369.
Watanabe, K., Manefield, M., Lee, M., Kouzuma, A., 2009. Electron shuttles in biotechnology. Current Opinion in Biotechnology 20, 633-641.
Wiatrowski, H.A., Das, S., Kukkadapu, R., Ilton, E.S., Barkay, T., Yee, N., 2009. Reduction of Hg (II) to Hg (0) by magnetite. Environmental science & technology 43, 5307-5313.
Wiatrowski, H.A., Ward, P.M., Barkay, T., 2006. Novel Reduction of Mercury(II) by Mercury-Sensitive Dissimilatory Metal Reducing Bacteria. Environmental Science & Technology 40, 6690-6696.
Winaikij, P., Sreearunothai, P., Sombatmankhong, K., 2018. Probing mechanisms for microbial extracellular electron transfer (EET) using electrochemical and microscopic characterisations. Solid State Ionics 320, 283-291.
Xia, K., Skyllberg, U., Bleam, W., Bloom, P., Nater, E., Helmke, P., 1999. X-ray absorption spectroscopic evidence for the complexation of Hg (II) by reduced sulfur in soil humic substances. Environmental science & technology 33, 257-261.
Zhang, H., 2006. Photochemical redox reactions of mercury, Recent Developments in Mercury Science. Springer, pp. 37-79.
Zhang, L., Wright, L.P., Blanchard, P., 2009. A review of current knowledge concerning dry deposition of atmospheric mercury. Atmospheric Environment 43, 5853-5864.
Zheng, W., Liang, L., Gu, B., 2011. Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environmental science & technology 46, 292-299.
王詩芸, 2016. 吸附汞之三價鐵礦於生物還原溶解過程中元素汞的生成與移動潛勢; Reductive dissolution of mercury-bearing iron (III)(oxyhydr) oxides by dissimilatory iron-reducing bacteria and the potential to mobilize mercury in its elemental form. 國立中央大學.
廖炳傑, 2014. 異化性鐵還原狀態下非生物性汞氧化還原 作用及其對地下水水質之影響. 中央大學環境工程研究所學位論文, 1-112.
指導教授 林居慶(Chu-Ching Lin) 審核日期 2018-11-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明