博碩士論文 104326008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:35.175.179.52
姓名 汪虹妙(Hong-Miao Wang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 改良式A2O系統厭氧槽與缺氧槽系統動力模式之發展與建立
(Development and establishment of system dynamics model of anaerobic tank and anoxic tank in modified A2O system)
相關論文
★ 彩色濾光片生產線清潔生產之改善研究★ 以離子交換法處理半導體廠氫氧化四甲基銨廢液之研究
★ 建立量測水位、MLSS濃度與SS濃度及污泥沉澱速度光學量測裝置之研究★ 奈米晶相Fe(OH)3催化臭氧反應程序處理油煙VOCs之發展
★ 無塵室揮發性有機污染物防制對策的探討★ 應用數位影像技術於廢水真色色度監測之研究
★ 污水處理廠操作最佳化之研究★ 河川流域水土資源承載力與永續力評量模式之發展
★ 單槽連續進流回分式活性污泥系統微生物菌相之研究★ 單槽連續進流回分式活性污泥系統溶氧控制之研究
★ 工業區廢水管理資訊系統之發展與建立-以觀音工業區為例★ 河川流域水管理系統動力學模式之發展與建立
★ 連續流回分式活性污泥系統好氧相曝氣控制策略之研究-線上即時量測溶氧轉換率與需氧量方法之建立★ 智慧型環境詞彙庫之發展與建置
★ 環境法規資料庫之發展與建置★ 連續流循序批分式活性污泥系統 好氧相即時曝氣控制策略之發展 — 低溶氧生物脫氮除磷程序控制技術之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2021-8-24以後開放)
摘要(中) 實廠改良式A2O系統係由厭氧槽、缺氧槽、好氧槽以及薄膜生物反應槽(Membrane bioreactor, MBR) 所串聯而成之污水處理程序處理都市生活污水,本研究對象為厭氧槽與缺氧槽兩個反應槽,由於污水處理系統設計多使用穩態數學模式,污水廠操作方式皆是採用固定式操作與控制方法,,加上人工水質檢測與量測方法需要耗費大量的人力物力及財力,無法應付進流水質水量隨著時間變動的動態污水處理系統。又無法對微生物本身菌群組成與微生物對各項物質能量轉化過程進行量化,就更難以掌握微生物實際的反應途徑與反應狀態,面對整個處理系統呈現高度複雜的關係,人工智慧控制系統應用在非穩定的動態系統比起傳統控制系統更兼具全面性與人性化。因此,本研究主要為將可量化非結構性問題的系統動力模式,結合具有自適應性學習能力、非線性映射能力和容錯能力的導傳遞類神經網路,整合為改良式A2O系統厭氧槽與缺氧槽系統動力模式,以即時找出改良式A2O系統厭氧槽與缺氧槽問題的原因,期望能提升系統出流水質的穩定度,以做為後續系統操作控制與維護管理改良式A2O系統正常運作之決策工具。整體而言,本研究利用導傳遞類神經網路建立系統物質反應速率推估模式發現6月份的3組循環水樣代入改良式A2O系統厭氧槽與缺氧槽系統動力模式,其模擬出流水質的驗證結果得到相對誤差百分比0.27%~39.55%為最大誤差範圍,而8月份的5組驗證組得到出流水質驗證結果平均相對誤差百分比高達50%,由此可知,本研究所建立之改良式A2O系統厭氧槽與缺氧槽系統動力模式於連續性水質檢測與監測條件下較具有可行性。並透過系統動力模式找出問題原因,並進行不同條件下的模式模擬,以擬定系統問題的操作與控制策略。
摘要(英) The modified A2O system is connected by anaerobic tank, anoxic tank, aerobic tank and membrane bioreactor(MBR) to treat urban domestic sewage, and this research object is anaerobic tank and anoxic tank. Since the operators of sewage treatment plant are used to take fixed operation and control method, and the sewage treatment system design is used to the steady state mathematical model, it cannot cope with the dynamic sewage treatment system with the influent water quality and quantity changing with time. This study will integrate the system dynamics model of non-structural problems, combined with the adaptive learning ability, nonlinear mapping ability and fault tolerance of the artificial neural network, integrated into the system dynamic model of the modified A2O system can find out the cause of the anaerobic tank and the anoxic tank problem. It is expected not only to improve the stability of the outflow water quality, but also to improve the normal operation of the modified A2O system for subsequent system operation, control, maintenance and management. The anaerobic tank and anoxic tank system dynamic model in modified A2O system established in this study is more feasible under continuous water quality testing and monitoring conditions. And we through the system dynamic model find the cause of the system problem and simulate the model under different conditions, to develop the operation and control strategy of problem in modified A2O system.
關鍵字(中) ★ 實廠改良式A2O系統
★ 系統動力模式
★ 污水處理系統自動控制
★ 類神經網路
關鍵字(英) ★ Modified A2O systems in real plant
★ System dynamics model
★ Sewage treatment system of automatic control
★ Artificial neural network
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 污水處理系統操作與控制的問題 3
2.2 污水處理系統操作與控制問題的原因與機制 4
2.2.1 傳統活性污泥模式 4
2.2.2 活性污泥系統數學動力模式 5
2.2.4 小結 5
2.3污水處理系統狀態與出流水質模式模擬之發展 6
2.3.1 利用類神經網路控制污水處理系統出流水質濃度 6
2.3.2 利用系統動力模式建立污水處理自動控制系統的發展 6
2.3.3 污水處理系統水質反應速率 7
2.3.4 污水處理自動控制系統的發展 7
2.3.5 小結 7
2.4 污水處理系統動力模式的發展與建立方法 8
2.4.1 系統動力模式發展與建立之工具 8
2.4.2 人工智慧控制方法之工具 15
2.4.3 小結 19
第三章 研究方法 20
3.1 研究流程與方法 20
3.2 改良式A2O系統界定 22
3.3 改良式A2O系統動力模式發展 24
3.4 類神經網路建立與測試 26
3.5 厭氧槽與缺氧槽系統動力模式建立與測試 31
3.6 厭氧槽與缺氧槽系統動力模式驗證與修正 32
第四章 結果與討論 33
4.1 改良式A2O系統界定 33
4.1.1 改良式A2O系統的目的 33
4.1.2 改良式A2O系統進流水質特性分析 33
4.1.3 改良式A2O系統的組成與其功能 34
4.1.4 小結 40
4.2 改良式A2O系統動力模式厭氧槽與缺氧槽發展 41
4.2.1 改良式A2O系統厭氧槽與缺氧槽系統因果回饋圖建立 41
4.2.2 改良式A2O系統厭氧槽與缺氧槽系統動力圖建立 48
4.2.3 厭氧槽與缺氧槽系統內物質質量隨時間變化公式之建立 50
4.3 厭氧槽與缺氧槽系統內水質反應速率推估模式之建立 53
4.4 改良式A2O系統厭氧槽與缺氧槽系統動力模式建立與測試 66
4.5 改良式A2O系統厭氧槽與缺氧槽系統動力模式驗證與修正 68
第五章 結論與建議 85
5.1 結論 85
5.2 建議 86
參考文獻 88
參考文獻 [1]J. F. Andrews, “Dynamic control of wastewater treatment plants”. Environmental science & technology, 28(9), 434A-440A, 1994.
[2]Y. Barlas, “System dynamics: systemic feedback modeling for policy analysis”. System, 1(59), 2007.
[3]J. S. Cech and P. Hartman, “Competition between polyphosphate and polysaccharide accumulating bacteria in enhanced biological phosphate removal system”. Wat. Res. 27(7), 1219-1225, 1993.
[4]J. Charpentier, H. Godart, G. Martin, and Y. Mogno, “Oxidation reduction potential (ORP) regulation as a way to optimize aeration and C, N and P removal: experience basis and various full-scale example”. Wat. Sci. Technol., 21, 1209-1223, 1989.
[5]G. Cybenko, “Approximation by superpositions of a sigmoidal function”. Mathematics of control, signals and systems, 2(4), 303-314, 1989.
[6]B. K. Das, M. Bandyopadhyay & P. K. Mohapatra, “System dynamics modeling of biological reactors for waste water treatment”. Journal of Environmental Systems, 25(3), 213-240, 1997.
[7]A. L. Downing, L. J. Scagg, “The effect of synthetic detergents on the rate of aeration in diffused air activated sludge plants”. Water Waste Treatment Journal, 7: 102, 1958.
[8]A. L. Downing, H. A. Painter, G. Knowles, “Nitrification in the activated sludge process”. Journal of the Institute of Sewage Purification 64(2): 130-158, 1964.
[9]Y. S. I. Environmental, “ORP Management in wastewater as an indicator of process efficiency”. YSI, Yellow Springs, OH, 2008.
[10]W. W. Eckenfelder, & D. J. O′Connor, “Biological waste treatment”. Elsevier, 2013.
[11]K. I. Funahashi, “On the approximate realization of continuous mappings by neural networks”. Neural networks, 2(3), 183-192, 1989.
[12]C. A. Gontarski, P. R. Rodrigues , M. Mori & L. F. Prenem, “Simulation of an industrial wastewater treatment plant using artificial neural networks”. Computers & Chemical Engineering, 24(2-7), 1719-1723 ,2000.
[13]Guerrero, Javier, et al. "Improving the performance of a WWTP control system by model-based setpoint optimisation." Environmental Modelling & Software 26.4: 492-497 ,2011.
[14]M. Hack & M. Kohne, “Estimation of wastewater process parameters using neural networks”. Water Science and Technology, 33(1), 101-115, 1996.
[15]B. Halling-Sorensen and S. E. Jorgensen, “The Removal of Nitrogen Compounds from wastewater”. Elsevier, Denmark, 55-151, 1993.
[16]M. F. Hamoda, I. A. Al-Ghusain & A. H. Hassan, “Integrated wastewater treatment plant performance evaluation using artificial neural networks”. Water Science and Technology, 40(7), 55-65, 1999.
[17]M. Henze, W. Gujer, T. Mino and M.C.M.van Loosdrecht, “Activated sludge models: ASM1, ASM2, ASM2d and ASM3”, IWA, London, 2000.
[18]T. Kuba, A. Wachtmeister, M. C. M. van Loosdrecht and J. J. Heijnen, “Effect of nitrate on phosphorus release in biological phosphorus removal system”. Wat. Sci. Technol. 30(6), 263-269, 1994.
[19]A. W. Lawrence & P. L. McCarty, “Unified basis for biological treatment design and operation”. Journal of the Sanitary Engineering Division, 96(3), 757-778, 1970.
[20]W. T. Liu, T. Mino, K. Nakamura and T. Matsuo, “Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal”. Wat. Res. 30(1), 75-82, 1996.
[21]S. A. Manesis, D. J. Sapidis & R. E. King, “Intelligent control of wastewater treatment plants”. Artificial Intelligence in Engineering, 12(3), 275-281, 1998.
[22]Y. Matsuo, “Effect of the anaerobic SRT on enhanced biological phosphorus removal”. Wat. Sci. Technol. 28, 127-136, 1994.
[23]R. E. McKinney, “Mathematics of complete-mixing activated sludge”. Journal of the Sanitary Engineering Division, 88(3), 87-114, 1962.
[24]T. Mino, V. Arun, Y. Tsuzuki & T. Matsuo, “Effect of phosphorus accumulation on acetate metabolism in the biological phosphorus removal process”. In Biological phosphate removal from wastewaters, pp. 27-38, 1987.
[25]J. Monod, “The growth of bacterial cultures”. Annual Reviews in Microbiology, 3(1), 371-394, 1949.
[26]M. Moo-Young, W. A. Anderson & A. M. Chakrabarty, “ Environmental biotechnology:principles and applications”. Springer Science & Business Media, 2013.
[27]D. Mulkerrins, A. D. W. Dobson & E. Colleran, “Parameters affecting biological phosphate removal from wastewaters”. Environment International, 30(2), 249-259, 2004.
[28]A. Oehmen, P. C. Lemos, G. Carvalho, Z. Yuan, J. Keller, L. L. Blackall, M. A. M. Reis, “Advances in enhanced biological phosphorus removal : From micro to macro scale”. Water Research, 41, 2271-2300, 2007.
[29]G. Olsson and B. Newell, “Wastewater Treatment Systems Modelling, Diagnosis and Control”, IWA, London, 2000.
[30]B. Ouyang, et al., “Human Prk is a conserved protein serinethreonine kinase involved in regulating M phase functions”. J Biol Chem272(45):28646-51, 1997.
[31]S. Park, B-J. Kim, and S-Y. Jung, “Simulation methods of a system dynamics model for efficient operations and planning of capacity expansion of activated-sludge wastewater treatment plants”. Procedia Engineering 70:1289-1295, 2014.
[32]B. Rabinowitz & G.v.R. Marais , “Chemical and biological phosphorus removal in the activated sludge process”, M.A.S.c. thesis, Univ. CapeTown, S.A., Res. Rep. No. W32, 1980.
[33]C. W. Randall, J. L. Barnard and H. D. Stensel, “Design and retrofit of wastewater treatment plants for biological nutrient removal”. Technomic Publishing Company, Inc., Pennsylvania, 1992.
[34]J. Randers, “Guidelines for Model Conceptualization in Elements of the System Dynamics Method”. J. Randers, ed. Waltham, MA: Pegasus Communications, 1980.
[35]N. Roberts, D. F. Andersen, R. M. Deal, M. S. Garet & W. A. Shaffer, “Introduction to computer simulation: the system dynamics approach”. Addison-Wesley Publishing Company, 1983.
[36]R.I. Sedlak, “Phosphorous and Nitrogen Removal From Municipal Wastwater: Principles and Practice”. 2nd edition. Lewis Publishers, 240p, 1991.
[37]A. A. Zagonel, “Model conceptualization in group model building: a review of the literature exploring the tension between representing reality and negotiating a social order”. In Proceedings of the 20th International System Dynamics Conference,Vol. 51, pp. 170-182, 2002, July.
[38]L. Zanetti, N. Frison, E. Nota, M. Tomizioli, D. Bolzonella & F. Fatone, “Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review”. Desalination, 286, 1-7, 2012.
[39]尤世雄,「CFSBR水質推估公式之發展與建立」,碩士論文,國立中央大學環境工程研究所,2006。
[40]白子易,「下水道系統生化動力模式建立之研究」,博士論文,國立中央大學環境工程研究所,2001。
[41]陳政傑,「利用系統動力模式建立 CFSBR 即時自動操作與控制策略之研究」,碩士論文,國立中央大學環境工程研究所,2014。
[42]陳政廷,「連續流循序批分式活性污泥自動控制系統之建立」,碩士論文,國立中央大學環境工程研究所,2015。
[43]葉怡成,類神經網路模式應用與實作,七版,儒林圖書有限公司,1993。
[44]羅華強,類神經網路-MATLAB的應用,高立出版社,2005。
[45]楊朝仲等人,系統動力學:思維與應用,五南圖書出版社,2007。
指導教授 廖述良 審核日期 2018-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明