博碩士論文 104326009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.144.48.135
姓名 李怡華(Lei,Yi Hua)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究
(Feasibility of Detoxification of Municipal Solid Waste Incinerator (MSWI) Fly Ash by Geopolymer)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究
★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究★ 評估機械處理(MT)技術製備一般事業廢棄物固態衍生燃料之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究嘗試應用無機聚合物技術,探討都市垃圾焚化飛灰無害化之可行性,研究過程藉由添加陶瓷纖維棉(5~20%)及洗砂場污泥(25~100%)等調質劑,調整反應材料間之矽鋁比,同時改變不同鹼性活化劑種類(如KOH及NaOH)、萃取時間(0.5~2小時)、養護溫度與濕度等條件,除評估焚化飛灰無害化之成效外,亦期改善無機聚合物可能衍生之白霜問題及提升無機聚合物的機械特性。研究結果顯示,在矽鋁比(Si/Al)控制在1.88,及控制養護溫度(20℃)與濕度 (65%)的條件下,無機聚合物試體表面的白霜現象明顯減少,且無機聚合物試體之抗壓強度可達30.5±1.7 kgf/cm2。研究進一步探討陶瓷纖維棉及洗砂場污泥的添加量,對焚化飛灰無害化及無機聚合物之機械性能的影響,結果顯示添加陶瓷纖維棉對提升機械性能有較佳的效果,無機聚合物試體之抗壓強度隨陶瓷纖維棉添加比例的增加而增加,其中當添加20%陶瓷纖維棉及使用鹼性活化劑KOH的試驗條件下,無機聚合物試體強度可達到49.4±2.2 kgf/cm2。萃取時間有助於無機聚合物之反應,其中萃取時間增加,無機聚合物之抗壓強度亦有增加的現象,當萃取時間增加為2 小時,無機聚合物之抗壓強度可達到68.5±8.9 kgf/cm2。焚化飛灰無害化成效的試驗分析結果顯示,以鹼性活化劑KOH、添加20 %陶瓷纖維棉及萃取兩小時的試驗條件為例,戴奧辛溶出毒性當量濃度,由原焚化飛灰的1.68 ng I-TEQ/g,降低至無機聚合物之0.44 ng I-TEQ/g,不僅符合法規管制標準之要求外,戴奧辛之破壞去除率亦達74.12 %。此外,無機聚合物試體之重金屬毒性溶出濃度分析結果,亦均遠低於法規管制標準。整體而言,根據本研究初步研究之成果,已成功驗證無機聚合物技術,可有效降低焚化飛灰重金屬及戴奧辛之溶出濃度,達到無害化之預期目標,未來極具有開發與應用的潛力。
摘要(英) This research investigates the feasibility of non-hazardous treatment of municipal solid waste incinerator (MSWI) fly ash by using geopolymer. The ceramic fiber (0~20%) and silt generated from gravel washing plant (25%~100%) were used as amendments to adjust Si/Al ratio of geopolymer. The alkaline activate agents (sodium hydroxide and potassium hydroxide), extraction time (30~120 minutes), curing temperature and humidity were also discussed. Meanwhile, to improve the efflorescence of geopolymer and to enhance the mechanic strengths of geopolymer were major objectives of this research. The experimental results showed the efflorescence in geopolymer was significantly eliminated and compressive strength was reached to 30.5±1.7 kgf/cm2 under the Si/Al ratio controlled at 1.88 and cured at 20℃ and 65% of humidity. Ceramic fiber was used as amendment could effectively enhance the mechanic strength of geopolymer. That is, the compressive strength of geopolymer was increased with an increase in ceramic fiber addition. In the case of 20 % ceramic fiber addition and KOH used as alkaline active agent, the compressive strength of geopolymer was approximately 49.4±2.2 kgf/cm2 at 28 curing days. Extraction time was also a critical parameter for evaluating performance of geopolymer. When the extraction time increased to 120 minutes, the compressive strength of geopolymer was increased to 68.5±8.9 kgf/cm2 at 28 curing days. On the other hand, in the case of detoxification of MSWI fly ash, the PCDD/Fs toxic equivalent quotient (TEQ) concentration of MSWI fly ash was significantly decreased from 1.68 ng I-TEQ/g to 0.44 ng I-TEQ/g by geopolymer controlled at KOH addition, 20 % ceramic fiber amendment and extraction time 120 minutes. It could not only comply with current Taiwan regulation thresholds, but also destruction and removal efficiency (DRE) of PCDD/Fs could approximately reach to 74.12%. Meanwhile, all tested heavy metals TCLP concentrations of geopolymer were also all in compliance with current Taiwan regulation thresholds. In summary, this study has successfully conducted the reduction in leaching concentrations of tested heavy metals and dioxin in MSWI fly ash, and that resulted in the detoxification of MSWI fly ash by geopolymer technology. Geopolymer technology could be good potential for development and application of MSWI fly ash detoxification in the future.
關鍵字(中) ★ 無機聚合物
★ 都市焚化飛灰
★ 陶瓷纖維棉
★ 洗砂污泥
★ 無害化
關鍵字(英) ★ Geopolymer
★ MSWI fly ash
★ ceramic fiber
★ silt
★ detoxification
論文目次 摘要 2
Abstract 3
致謝 5
目錄 6
圖目錄 9
表目錄 12
第一章 前言 1
第二章 文獻回顧 4
2-1 都市垃圾焚化飛灰處理現況 4
2-1-1 都市垃圾焚化飛灰現況與面臨問題 4
2-1-2 都市垃圾焚化飛灰基本特性分析 5
2-1-3 都市垃圾焚化飛灰處理技術 19
2-2 無機聚合技術 30
2-2-1 技術原理與反應機制 30
2-2-2 技術應用之影響因素 33
2-2-3 無機聚合物物之特性及應用 40
2-3 無機聚合物應用時機與未來發展前景 43
2-3-1 國內無機聚合物應用實績 43
2-3-2 無機聚合物應用發展的限制 49
2-3-3 技術發展的前景 50
第三章 實驗材料與方法 52
3-1 實驗材料 52
3-2 實驗條件及流程 53
3-3 實驗分析項目與方法 56
3-3-1 分析原料基本特性 56
3-3-2 分析無機聚合物試體 62
第四章 結果與討論 64
4-1 材料之基本特性分析 64
4-1-1 基本特性分析 64
4-1-2 物種鑑定及微觀結構分析 76
4-2 無機聚合物之預先試驗 82
4-3 調質劑對無機聚合物之影響 85
4-3-1 外添加陶瓷纖維棉對無機聚合物之影響 85
4-3-2 外添加洗砂場污泥對無機聚合物之影響 103
4-3-3 外添加洗砂場污泥及陶瓷纖維棉對無機聚合物之影響 116
4-4萃取時間對無機聚合物試體之影響 129
第五章 結論與建議 137
5-1 結論 137
5-2 建議 139
參考文獻 140
附錄 151
附錄一、試體外觀上的白霜 152
附錄二、試體外觀 152
附錄三、飛灰PCDD/Fs質量濃度 153
附錄四、飛灰PCDD/Fs毒性當量濃度 153
附錄五、無機聚合物PCDD/Fs質量濃度 154
附錄六、無機聚合物PCDD/Fs毒性當量濃度 154
附錄七、飛灰粒徑分佈 155

參考文獻 Abe, S. I., Kambayashi, F., & Okada, M., 1996. Ash melting treatment by rotating type surface melting furnace. Waste Management, 16(5), 431-443.
Al-Majidi, M. H., Lampropoulos, A., Cundy, A., & Meikle, S., 2016. Development of geopolymer mortar under ambient temperature for in situ applications. Construction and Building Materials, 120, 198-211.
Amec forster wheeler . [online] Available at: https://www.amecfw.com/
Bakharev, T., 2005. Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and Concrete Research, 35(6), 1224-1232.
Bakharev, T., 2005. Resistance of geopolymer materials to acid attack. Cement and Concrete Research, 35(4), 658-670.
Bayuseno, A., Schmahl, W. W., & Müllejans, T., 2009. Hydrothermal processing of MSWI Fly Ash-towards new stable minerals and fixation of heavy metals. Journal of Hazardous Materials, 167(1), 250-259.
Belitskus, D., 1970. Reaction of aluminum with sodium hydroxide solution as a source of hydrogen. Journal of the Electrochemical Society, 117(8), 1097-1099.
Bertos, M. F., Simons, S., Hills, C., & Carey, P., 2004. A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO 2. Journal of Hazardous Materials, 112(3), 193-205.
Bournonville, B., A. Nzihou, P. Sharrock, and G. Depelsenaire, 2004. Stabilisation of Heavy Metal Containing Dusts by Reaction with Phosphoric Acid: Study of the Reactivity of Fly Ash, Journal of Hazardous Materials, Vol. 116, No. 1–2, 65–74.
Chang, M.B., & Chung, Y.T., 1998. Dioxin contents in fly ashes of MSW incineration in Taiwan. Chemosphere, 36(9), 1959-1968.
Chang, M.B., Huang, T.F., 2000. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash. Chemosphere 40, 159-164.
Cheng, T.W., 2003. Fire resistant geopolymer produced by waste serpentine cutting. Paper presented at the Proceedings of the 7th International Symposium on East Asian Resources Recycling Technology, Taiwan.
Cheng, T. W., Ueng, T. H., Chen, Y. S., & Chiu, J. P., 2002. Production of glass-ceramic from incinerator fly ash. Ceramics International, 28(7), 779-783.
Chimenos, J., Fernandez, A., Miralles, L., Segarra, M., & Espiell, F., 2003. Short-term natural weathering of MSWI bottom ash as a function of particle size. Waste Management, 23(10), 887-895.
Chithiraputhiran, S. R., 2012. Kinetics of Alkaline Activation of Slag and Fly ash-Slag Systems: Arizona State University.
Chang, M. B., Huang, H. C., Tsai, S. S., Chi, K. H., & Chang-Chien, G. P., 2006. Evaluation of the emission characteristics of PCDD/Fs from electric arc furnaces. Chemosphere, 62(11), 1761-1773.
Chen, T., Yan, J. H., Lu, S. Y., Li, X. D., Gu, Y. L., Dai, H. F., Cen, K. F., 2008. Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in china. Journal of Hazardous Materials, 150(3), 510-514.
Chi, K. H., Chang, M. B., Chang-Chien, G. P., & Lin, C., 2005. Characteristics of PCDD/F congener distributions in gas/particulate phases and emissions from two municipal solid waste incinerators in Taiwan. Science of The Total Environment, 347(1), 148-162.
Chiang, K.Y., Hu, Y.H., 2010. Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Management, 30(5), 831-838.
Davidovits, J., 2008. Geopolymer chemistry and applications: Geopolymer Institute.
Davidovits, J., 2013. Geopolymer Cement, a review. Paper presented at the Institut Geopolymere, France.
Davidovits, J., 1991.Geopolymers – inorganic polymeric new material. Journal of thermal analysis, 37(8), 1633-1656.
Dickson, L., Lenoir, D., Hutzinger, O., Naikwadi, K., & Karasek, F., 1989. Inhibition of chlorinated dibenzo-p-dioxin formation on municipal incinerator fly ash by using catalyst inhibitors. Chemosphere, 19(8-9), 1435-1445.
Du, Y.J., Wei, M.L., Reddy, K. R., Liu, Z.-P., & Jin, F., 2014. Effect of acid rain pH on leaching behavior of cement stabilized lead-contaminated soil. Journal of Hazardous Materials, 271, 131-140.
Environment Australia , 1999. Incineration and Dioxins: Review of Formation Processes, consultancy report prepared by Environmental and Safety Services for Environment Australia, Commonwealth Department of the Environment and Heritage, Canberra.
Galiano, Y. L., Pereira, C. F., & Vale, J., 2011. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. Journal of Hazardous Materials, 185(1), 373-381.
García-Mejía, T. A., & de Lourdes Chávez-García, M., 2016. Compressive Strength of Metakaolin-Based Geopolymers: Influence of KOH Concentration, Temperature, Time and Relative Humidity. Materials Sciences and Applications, 7(11), 772.
Görhan, G. and G. Kürklü, 2014.The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering ,58, 371-377.
Hajimohammadi, A., Ngo, T., Mendis, P., & Sanjayan, J., 2017. Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Materials & Design, 120, 255-265.
Hardjito, D., & Rangan, B. V., 2005. Development and properties of low-calcium fly ash-based geopolymer concrete.
Hardjito, D., Wallah, S., Sumajouw, D., & Rangan, B., 2005. Introducing fly ash-based geopolymer concrete: manufacture and engineering properties. Paper presented at the 30th Conference on our World in Concrete and Structures.
Ho, H. C., Chow, J. D., & Gau, S. H., 2008. Thermal mobility of heavy metals in municipal solid waste incinerator fly ash (MSWIFA). Environmental Engineering Science, 25(5), 649-656.
Hwang, C.L., & Huynh, T.P., 2015. Effect of alkali-activator and rice husk ash content on strength development of fly ash and residual rice husk ash-based geopolymers. Construction and Building Materials, 101, Part 1, 1-9.
Huang, S.C., Chang, F.C., Lo, S.L., Lee, M.Y., Wang, C.F., & Lin, J.D., 2007. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144(1), 52-58.
Huang, T., D. Li, L. Kexiang and Y. Zhang. 2015. Heavy metal removal from MSWI fly ash by electrokinetic remediation coupled with a permeable activated charcoal reactive barrier. Scientific Reports, 5.
KALKI’D. [online] Available at: https://store.25togo.com/collections/kalkid
Kalogirou, E., Themelis, N., Samaras, P., Karagiannidis, A., & Kontogianni, S., 2010. Fly ash characteristics from waste-to-energy facilities and processes for ash stabilization. Paper presented at the ISWA World Congress.
Lam, C. H., Ip, A. W., Barford, J. P., & McKay, G., 2010. Use of incineration MSW ash: a review. Sustainability, 2(7), 1943-1968.
Lancellotti, I., Kamseu, E., Michelazzi, M., Barbieri, L., Corradi, A., & Leonelli, C., 2010. Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Management, 30(4), 673-679.
Lange, L., Hills, C., & Poole, A., 1996. The influence of mix parameters and binder choice on the carbonation of cement solidified wastes. Waste Management, 16(8), 749-756.
Lancellotti, I., M. Catauro, C. Ponzoni, F. Bollino and C. Leonelli, 2013. Inorganic polymers from alkali activation of metakaolin: Effect of setting and curing on structure. Journal of Solid State Chemistry, 200, 341-348.
Lee, S., van Riessen, A., Chon, C. M., Kang, N. H., Jou, H. T., & Kim, Y. J., 2016. Impact of activator type on the immobilisation of lead in fly ash-based geopolymer. J Hazard Mater, 305, 59-66.
Lima, S. P. B. d., Vasconcelos, R. P. d., Paiva, O. A., Cordeiro, G. C., Chaves, M. R. d. M., Toledo Filho, R. D., & Fairbairn, E. d. M. R., 2011. Production of silica gel from residual rice husk ash. Química Nova, 34(1), 71-75.
Lin, K., Wang, K., Tzeng, B., & Lin, C., 2003. The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resources, Conservation and Recycling, 39(4), 315-324.
Lin, K. L., 2006. Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials, 137(3), 1810-1816.
Lin, K.L., Shiu, H.-S., Shie, J.-L., Cheng, T.-W., & Hwang, C.-L., 2012. Effect of composition on characteristics of thin film transistor liquid crystal display (TFT-LCD) waste glass-metakaolin-based geopolymers. Construction and Building Materials, 36, 501-507.
Lin, K. L., Shiu, H. S., Hwang, C. L., Cheng, A., & Cheng, T. W., 2014. Effects of SiO2/Na2O molar ratio on properties of TFT-LCD waste glass-metakaolin-based geopolymers. Environmental Progress and Sustainable Energy, 33(1), 205-212.
Liu, J., Fang, Y., & Kayali, O., 2016. Study on the Disposition of Water in Fly Ash-Based Geopolymers Using ATR–IR.
Liu, H., Lu, H., Chen, D., Wang, H., Xu, H., & Zhang, R., 2009. Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process. Ceramics International, 35(8), 3181-3184.
Lundin, L., Marklund, S., 2008. Distribution of mono to octa-chlorinated PCDD/Fs in fly ash from a municipal solid-waste incinerator. Environmental Science & Technology 42, 1245-1250.
Luukkonen, T., M. Sarkkinen, K. Kemppainen, J. Rämö and U. Lassi, 2016. Metakaolin geopolymer characterization and application for ammonium removal from model solutions and landfill leachate. Applied Clay Science, 119, 266-276.
Ma, W., Brown, P. W., & Komarneni, S., 1998. Characterization and cation exchange properties of zeolite synthesized from fly ashes. Journal of materials research, 13(1), 3-7.
Mangialardi, T., 2001. Sintering of MSW fly ash for reuse as a concrete aggregate. Journal of Hazardous Materials, 87(1), 225-239.
Mangialardi, T., 2003. Disposal of MSWI fly ash through a combined washing-immobilisation process. Journal of Hazardous Materials, 98(1-3), 225-240.
Milliken Infrastructure Solutions, LLC. [online] Available at: http://geopolymers.milliken.com/Pages/home.aspx, June, 2017.
Moon, M. H., Kang, D., Lim, H., Oh, J.-E., & Chang, Y.-S., 2002. Continuous fractionation of fly ash particles by SPLITT for the investigation of PCDD/Fs levels in different sizes of insoluble particles. Environmental science & technology, 36(20), 4416-4423.
Palomo, A., Grutzeck, M. W., & Blanco, M. T., 1999. Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29(8), 1323-1329.
Pan, J. R., Huang, C., Kuo, J. J., & Lin, S. H., 2008. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Waste Management, 28(7), 1113-1118.
Panias, D., Giannopoulou, I. P., & Perraki, T., 2007. Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301(1–3), 246-254.
Phair, J. W., & Van Deventer, J. S. J., 2001. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 14(3), 289-304.
Qian, G., Cao, Y., Chui, P., & Tay, J., 2006. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Journal of Hazardous Materials, 129(1–3), 274-281.
Ross, B. J., Lacombe, D., Naikwadi, K. P., & Karasek, F. W., 1990. Investigation of the effect of water, acids, and bases in the gas stream in the catalytic formation of PCDD and PCDF over MSW fly ash. Chemosphere, 20(10), 1967-1972.
Rovnaník, P., 2010. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Construction and Building Materials, 24(7), 1176-1183.
Sakai, S.I., & Hiraoka, M., 2000. Municipal solid waste incinerator residue recycling by thermal processes. Waste Management, 20(2), 249-258.
Shiu, H. S., Lin, K. L., Chao, S. J., Hwang, C. L., & Cheng, T. W.,2014. Effects of foam agent on characteristics of thin‐film transistor liquid crystal display waste glass‐metakaolin‐based cellular geopolymer. Environmental Progress & Sustainable Energy, 33(2), 538-550.
Shin, K.-J., & Chang, Y.-S., 1999. Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from korean municipal solid waste incinerators. Chemosphere, 38(11), 2655-2666.
Škvára, F., Kopecký, L., Myšková, L., Šmilauer, V., Alberovska, L., & Vinšová, L., 2009. Aluminosilicate polymers–influence of elevated temperatures, efflorescence. Ceramics–Silikáty, 53(4), 276-282.
Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., & Chindaprasirt, P., 2011. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel, 90(6), 2118-2124.
Spence, R. D., & Shi, C., 2004. Stabilization and solidification of hazardous, radioactive, and mixed wastes: CRC press.
Sukandar, S., Yasuda, K., Tanaka, M., & Aoyama, I., 2006. Metals leachability from medical waste incinerator fly ash: a case study on particle size comparison. Environmental Pollution, 144(3), 726-735.
Swanepoel, J. C., & Strydom, C. A., 2002. Utilisation of fly ash in a geopolymeric material. Applied Geochemistry, 17(8), 1143-1148.
Tchobanoglous, G., Theisen, H., & Vigil, S., 1993. Integrated solid waste management: engineering principles and management issues: McGraw-Hill Science/Engineering/Math.
Universal enterprise. [online] Available at: https://www.indiamart.com/universal-entp/
US EPA, 1998. The Inventory of Sources of Dioxin in the United States. EPA/600/P-98/002Aa
Van den Berg, M., Birnbaum, L. S., Denison, M., De Vito, M., Farland, W., Feeley, M., Haws, L., 2006. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological sciences, 93(2), 223-241.
Wagners. [online] Available at: http://www.wagner.com.au/, June, 2017.
Wang, K.S., Chiang, K.Y., Lin, K.L., & Sun, C.J., 2001. Effects of a water-extraction process on heavy metal behavior in municipal solid waste incinerator fly ash. Hydrometallurgy, 62(2), 73-81.
Wang, K.S., Lin, K.L., & Huang, Z.Q., 2001. Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement. Cement and Concrete Research, 31(1), 97-103.
Wang, K.S., Lin, K.L., & Lee, C.H., 2009. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction. Journal of Hazardous Materials, 162(1), 338-343.
Yao, Z., Tamura, C., Matsuda, M., & Miyake, M., 1999. Resource recovery of waste incineration fly ash: Synthesis of tobermorite as ion exchanger. Journal of materials research, 14(11), 4437-4442.
Yao, X., Yang, T., & Zhang, Z., 2016. Fly ash-based geopolymers: Effect of slag addition on efflorescence. Journal of Wuhan University of Technology. Materials Science Edition, 31(3), 689.
Ye, N., Chen, Y., Yang, J., Liang, S., Hu, Y., Xiao, B., Wu, X., 2016. Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. Journal of Hazardous Materials, 318, 70-78.
Yunsheng, Z., Wei, S., & Zongjin, L., 2010. Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Applied Clay Science, 47(3-4), 271-275.
Zeng, S., & Wang, J., 2016. Characterization of mechanical and electric properties of geopolymers synthesized using four locally available fly ashes. Construction and Building Materials, 121, 386-399.
Zhang, Z., Provis, J. L., Reid, A., & Wang, H., 2014. Fly ash-based geopolymers: The relationship between composition, pore structure and efflorescence. Cement and Concrete Research, 64, 30-41.
Zheng, L., Wang, C., Wang, W., Shi, Y., & Gao, X., 2011. Immobilization of MSWI fly ash through geopolymerization: Effects of water-wash. Waste Management, 31(2), 311-317.
Zheng, L., Wang, W., & Gao, X., 2016. Solidification and immobilization of MSWI fly ash through aluminate geopolymerization: Based on partial charge model analysis. Waste Management, 58, 270-279.
王志豪,鄭大偉,楊立昌,2015。無機聚合綠色水泥及混凝土之收縮性質及耐久特性之研究,第二十七屆廢棄物處理技術研討會。
江康鈺,王鯤生,1999,廢棄物焚化過程重金屬分佈及排放之特性,工業污染防治季刊,第七十期。
江勝偉,簡光勵,胡哲誠,廖啟宏,林國明,鍾人傑,2014。以無機吸附法處理低放射性廢水核種之研究,103年環保技術與工程實務研討會。
行政院環境保護署,2016。行政院環境保護署環境保護統計年報 105年。
行政院環境保護署,2016。營運中公有掩埋場掩埋場容量統計表,環境資料開放平台。
李明霖,鄭大偉,翁祖炘,柯明賢,2007。無機聚合物吸附重金屬之特性,第十九屆廢棄物處理技術研討會。
周綵蓉、江康鈺、陳雅馨、呂承翰、李怡華,2016。廢棄保溫材料製備為無機聚合材料之特性評估研究,105年產業溫室氣體減量成果發表暨綠色技術與工程實務研討會。
林宜臻,2013,焚化飛灰固化最佳條件之研究-實廠案例探討,碩士論文,國立臺北科技大學環境工程與管理研究所。
林瑋倫,2009。檢激發盧時機膠體工程性質之研究,碩士論文,國立台灣科技大學營建工程系。
林以潔,陳志成,江金龍,2016。焚化飛灰鹼熔水熱合成沸石之最佳操作條件研究,第二十八屆廢棄物處理技術研討會。
林凱隆,許皓翔,鄭大偉,黃兆龍,2011。TFT-LCD廢玻璃以不同SiO2/Na2O 比製備無機聚合物之研究,第二十三屆廢棄物處理技術研討會。
林岳凱,呂東璇,張祖恩,2016。鹼活化轉爐石細粉料產製工程材料之研究,第二十八屆廢棄物處理技術研討會。
林瑋倫,2009。檢激發盧時機膠體工程性質之研究,碩士論文,國立台灣科技大學營建工程系。
柯明賢,簡呈至,陳盈良,賴怡潔,2016。焚化飛灰穩定化物再利用混凝土磚之重金屬長期穩定性,第二十八屆廢棄物處理技術研討會。
柯翰勝,鄭大偉,2011。無機聚合技術應用於綠色水泥之開發研究,2011年清潔生產暨環保技術研討會。
孫常榮,2001,都市垃圾焚化飛灰水溶性與矽質成分在燒結熱處理過程對重金屬行為之影響,碩士論文,國立中央大學環境工程研究所。
高思懷,1997,垃圾焚化灰渣利用之研發建制及推廣計畫 (第二年),行政院環保署廢管處。
陳昭羽,2011。加速碳酸鹽化反應對垃圾焚化灰渣重金屬溶出特性影響之研究,碩士論文,私立逢甲大學環境工程與科學學系。
陳元昊,2002。萃取前處理焚化飛灰作為卜作嵐攙和料之研究,碩士論文, 國立成功大學環境工程研究所。
張坤森,蘇薏茹,邱孔濱,徐誠隆,楊之葶,2016。利於垃圾焚化飛灰再用之精進無害處理研究,第二十八屆廢棄物處理技術研討會。
張坤森,韓雄文,陳麗萍,鍾政宏,柯韋丞,2012。垃圾焚化飛灰無害化及再利用製成紅磚之研究,第二十三屆廢棄物處理技術研討會。
張坤森,韓雄文,劉美芬,楊雅婷,王姿婷,譚振偉,2012。無害飛灰再利用製備瓷磚之特性分析及其可行性探討,第二十三屆廢棄物處理技術研討會。
張坤森,鍾日熙,陳麗萍,黃晨豪,柯韋丞,林衢宏,2013。垃圾焚化飛灰重金屬無害化處理技術之研發,第二十五屆廢棄物處理技術研討會。
張格誌,鄭大偉,2015。焚化飛灰資源及製成無機聚合綠色水泥之研究,第二十七屆廢棄物處理技術研討會。
曾德意,2008。台灣地區垃圾焚化廠灰渣戴奧辛含量特徵之研究,碩士論文,國立臺北科技大學環境工程與管理研究所。
黃立遠,張大鵬,陳柏存,施正元,2009。以實驗設計法探討鹼性溶液組成對於飛灰基無機聚合物力學性質之影響,中國土木水利工程學刊,第21卷,第3期,339-349。
楊朝欽,2011。飛灰熱熔之研究: 金屬分布與包匣特徵,碩士論文,屏東科技大學環境工程與科學系所, 1-109。
詹炯淵,2001,垃圾焚化飛灰管理對策之研究,國立台灣大學環境工程學研究所碩士論文。
廖文彬,楊仁泊,郭韋廷,黃瑞淵,2013。垃圾焚化飛灰重金屬無害化處理技術之研發,第二十四屆廢棄物處理技術研討會。
鄭大偉,2010,無機聚合技術的發展應用及回顧,礦冶,54卷,第1期,2010,第140頁-第157頁。
潘述元,蔣本基,張怡怡, 陳奕宏,2014,應用超重力旋轉填充床進行二氧化碳捕獲與爐渣安定化之績效評估,鑛冶: 中國鑛冶工程學會會刊,(227),56-62。
鍾清汶,鄭大偉,2014。無機聚合技術固化/穩定化焚化飛灰之研究,103年環保技術與工程實務研討會。
戴于盛,鄭大偉,柯明賢,2012。無機聚合綠色水泥應用於固化焚化飛灰之研究,第二十三屆廢棄物處理技術研討會。
簡呈至,柯明賢,2012。焚化飛灰穩定化物再利用作為混凝土磚可行性之探討,第二十三屆廢棄物處理技術研討會。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2018-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明