博碩士論文 104326010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:125 、訪客IP:3.145.191.214
姓名 鄭釋緣(Shih-Yuan Jheng)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
(Evaluation on energy yield efficiency and pollutants emission characterization in gasification of automobile shredder residue(ASR) by prepared catalyst)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性
★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究
★ 污水處理廠逸散微粒之物理、化學及生物特性分析★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究★ 評估機械處理(MT)技術製備一般事業廢棄物固態衍生燃料之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用固定床及流體化床氣化系統探討廢車破碎殘餘物(Automobile shredder residue, ASR),在控制當量比(Equivalene ratio, ER)、氣化溫度(900 ℃)及催化劑添加(5~15 wt.%)之條件下,評估產氣組成特性、產物分佈特性、產能效率及污染物(重金屬、硫及氯)排放特性,其中催化劑係以廢棄牡蠣殼自行製備,相關催化劑之功能特性,亦是本研究探討之重點。
  牡蠣殼為本研究選擇製備催化劑之重要基材,其中牡蠣殼經破碎為粉末後,經熱重及元素分析分析結果顯示,粉末牡蠣殼之主要組成為90.55~96.86 wt.%之碳酸鈣,其比表面積約為1.983 m2/g,本研究將粉末牡犡殼視為一種催化劑(催化劑A)。另將前述之粉末牡犡殼經800℃?燒3小時後,製備為?燒牡蠣殼(催化劑B),經試驗分析結果可知,主要組成為氧化鈣,其比表面積略增為4.932 m2/g。另以氫氧化鈉之化學方法製備之催化劑C,主要成分為氫氧化鈣,其比表面積與原粉末牡蠣殼相似,約為1.978 m2/g。
根據氣體組成及產能效率分析結果顯示,固定床催化氣化反應系統,在無添加催化劑條件下,氣體熱值及冷燃氣效率分別約為1.55 MJ/Nm3及5.22 %。隨著添加前述自製催化劑,ASR轉換之產能效率則有增加之現象,以添加10 wt.%之自製催化劑條件,氣體熱值自無催化劑之1.55 MJ/Nm3分別增加至3.11 MJ/Nm3(催化劑A)、3.06 MJ/Nm3(催化劑B)及2.67 MJ/Nm3(催化劑C)。另以?燒牡犡殼粉末(催化劑B)而言,冷燃氣效率亦由5.22 %增加至11.50 %。整體而言,添加催化劑A之試驗結果有最高之氣體熱值及冷燃氣效率,此係因催化劑A具有較高之比表面積,可促進甲烷生成反應,明顯提昇氣體熱值及冷燃氣效率。至於流體化床之試驗結果顯示,以添加催化劑A及10 wt.%比例條件為例,氣體熱值及冷燃氣效率分別約為3.80 MJ/Nm3及25.29 %。依能源轉換效率而言,流體化床氣化反應系統,具有較佳之ASR轉換能源之效率。
重金屬排放特性之分析結果顯示,以添加10 wt.%催化劑A及固定床氣化反應系統而言,重金屬鉻、銅及鋅之分佈特性,因其揮發溫度較高,主要以分佈於焦碳為主,分別約佔97.54 %、85.74 %及90.07 %。重金屬鎘及鉛之分佈,則因其具有較高之揮發性,故以焦油或粒狀物為主要分佈地點,分別約佔57.09 %及65.77 %。至於重金屬汞則因其具有高揮發性,主要以合成氣為其分佈地點,約占87.24 %。至於以流體化床氣化爐為反應系統,重金屬分佈特性之變化,主要受到流體化床混合攪動特性之影響,可能發生粒狀物傳曳作用,使得污染物分佈至粒狀物,其中以重金屬鉛之分佈特性變化最為明顯。整體而言,本研究初步結果可知,自製催化劑可明顯促進ASR氣化轉換能源之效率,同時對於ASR氣化處理過程,重金屬及其衍生污染物之排放及分佈特性,亦有完整的評估與探討,因此,研究成果可作為未來ASR氣化處理過程之技術選擇及重金屬排放與管制策略之參考依據。
摘要(英) This study investigates that automobile shredder residue (ASR) converted into energy by fixed bed and fluidized bed gasification system with controlling at ER 0.2, temperature 900℃ and 5-15 wt.% prepared catalyst addition. The producer gas composition, products distribution, energy yield efficiency and trace pollutants (e.g. heavy metal, sulfur and chlorine) emission characteristics were also evaluated. The tested catalysts were prepared by oyster shell and their performances were discussed.
  The waste oyster shell was a major matrix for manufacturing prepared catalyst. Catalyst A was directly converted from waste oyster shell to powder oyster shell via shredding. Based on the analysis results of elemental and thermogravimetric analysis, the powder oyster shell (Catalyst A) was approximately 90.55-96.86 wt.% of calcium carbonate with 1.983 m2/g of specific surface area. Catalyst B was manufactured from powder oyster shell calcined at 800℃ for 3 hours (referred as calcined oyster shell). The major composition of tested catalyst B was calcium oxide. The specific surface area was slightly increased to 4.932 m2/g. The Catalyst C was prepared by the chemical method adding sodium hydroxide and expected to form calcium hydroxide. The specific surface area of tested Catalyst C was approximately 1.978 m2/g that it was similar with that of tested catalyst A.
  In the case of fixed bed gasifier and without tested catalyst addition, the heating value of producer gas and cold gas efficiency (CGE) were approximately 1.55 MJ/Nm3 and 5.22%, respectively. And the energy yield efficiency of ASR conversion was increased with an increase in tested prepared catalyst addition. In the case of 10 wt.% of tested prepared catalysts addition, the producer gas heating value increased from 1.55 MJ/Nm3 to 3.11 MJ/Nm3 (catalyst A), 3.06 MJ/Nm3 (catalyst B), and 2.67 MJ/Nm3 (catalyst C), respectively. Meanwhile, in the case of 10 wt% tested catalyst B addition, CGE was also increased from 5.22 % to 11.50 %. Overall, the prepared Catalyst A could enhance heating value and CGE resulted in high specific surface area and promotion in methane formation reaction. On the other hand, in the case of fluidized bed gasifier and 10 wt.% Catalyst A addition, the producer gas heating value and CGE were approximately 3.80 MJ/Nm3 and 25.29 %, respectively. In terms of energy conversion efficiency, the fluidized bed gasification system has better ASR energy conversion efficiency than that of fixed bed gasifier.
  The heavy metals emission characteristics results indicated that chromium, copper and zinc were mainly partitioned in char under gasified by fixed bed gasifier and 10 wt.% Catalyst A addition. The Cr, Cu, and Zn partitioning percentages of char were approximately 97.54%, 85.74% and 90.07%, respectively. This is because the above tested metals have a higher volatilization temperature. The partitioning of cadmium and lead were mainly partitioned in tar or particulate resulted in their high volatility characteristics. The Cd and Pb partitioning percentages of tar and/or particulate were approximately 57.09% and 65.77%, respectively. In the case of mercury partitioning characteristics, the Hg partitioning percentage of syngas was nearly 87.24% resulted in Hg has a relatively high volatility. As for the fluidized bed gasifier system, the variation of the heavy metals partitioning characteristics was mainly influenced by the turbulent characteristics of the fluidized bed gasifier. Therefore, the most tested metals were mainly partitioned in particulate, especially for Pb partitioning characteristics was significantly varied. In summary, the prepared catalysts used in this research could enhance energy conversion from ASR via gasification. Meanwhile, the tested heavy metals emission and partitioning characteristics were also well established during ASR gasification process. Therefore, the results of this research could provide the good information for selection of gasification technologies and control strategies of metals emission in the future.
關鍵字(中) ★ 廢車破碎殘餘物
★ 氣化
★ 牡蠣殼
★ 重金屬
★ 分佈特性
關鍵字(英) ★ Automobile shredder residue (ASR)
★ gasification
★ oyster shell
★ heavy metal
★ partitioning
論文目次 目錄
摘要……………………………………………………………………………………..i
Abstract……………………………………………………………………………….iii
誌謝……………………………………………………………………………………vi
目錄……………………………………………………………………………….......vii
圖目錄……………………………………………………………………………….xi
表目錄……………………………………………………………………………...xv
第一章 前言………………………………………………………………...............…1
第二章 文獻回顧…………………………………………………………...............…5
2-1廢車破碎殘餘物之處理現況……..…………………………………..............5
2-1-1處理現況與管理法律沿革………………………………………….5
2-1-2 廢車破碎殘餘物特性………………………………………………11
2-2 牡蠣殼現況與基本特性……………………………………………………26
2-3 氣化技術……………………………………………………………………31
2-3-1氣化的原理…………………………………………………………...31
2-3-2 ASR氣化……………………………………………………………...32
2-3-3 催化劑製備方法及催化劑對氣化的影響…………………………..34
2-3-4重金屬污染排放……………………………………………………...40
2-3-5氯化氫污染排放……………………………………………………...43
2-3-6硫化氫污染排放……………………………………………………...45
第三章 研究材料與方法…………………………………………………………….51
3-1 研究材料……………………………………………………………………51
3-1-1 氣化原料……………………………………………………………..51
3-1-2 催化劑………………………………………………………………..52
3-2 催化劑製備…………………………………………………………………52
3-3 實驗設備與條件……………………………………………………………53
3-3-1固定床實驗設備與條件……………………………………………...53
3-3-2流體化床實驗設備與條件…………………………………………...56
3-4 分析項目與方法……………………………………………………………58
3-4-1基本特性分析方法…………………………………………………...58
3-4-2 催化劑分析方法……………………………………………………..63
3-4-3反應動力分析………………………………………………………...64
3-4-4 氣化產物分析………………………………………………………..65
第四章 結果與討論………………………………………………………………….71
4-1 ASR之基本特性…………………………………………………………….71
4-1-1 ASR之物理特性分析結果…………………………………………...71
4-1-2 ASR之近似分析、元素分析及發熱量分析結果…………………….72
4-1-3 ASR之金屬特性分析結果…………………………………………...75
4-1-4 ASR之官能基分析結果……………………………………………...79
4-2 廢車破碎殘餘物熱反應動力特性分析…………………………………..89
4-2-1 TG-FTIR分析結果…………………………………………………90
4-2-2 熱重反應動力特性分析………….………………………………...102
4-3催化劑………………………………………………………………………114
4-3-1牡蠣殼廢棄物基本特性分析……………………………………….114
4-3-2 牡蠣殼廢棄物之熱重、SEM、XRD及金屬分析結果……………..116
4-3-3催化劑製備及特性………………………………………………….118
4-4 廢車破碎殘餘物氣化轉換能源之可行性評估………………………..…124
4-4-1 廢車破碎殘餘物氣化溫度變化之影響評估………………………124
4-4-2 廢車破碎殘餘物催化氣化之影響評估……………………………138
4-3-3廢車破碎殘餘物催化氣化規模化之影響評估…………………….181
4-5 廢車破碎殘餘物氣化轉換過程之污染物流佈結果……………………..208
4-5-1 固定床之重金屬分佈特性……………………………………..….208
4-5-2流體化床之重金屬分佈特性……………………………………….238
4-5-3固定床之氯分佈特性……………………………………………….256
4-5-4流體化床之氯分佈特性…………………………………………….259
4-5-5固定床之硫分佈特性……………………………………………….262
4-5-6流體化床之硫分佈特性…………………………………………….265
4-5-7污染物排放關係…………………………………………………….267
第五章 結論與建議………………………………………………………………...273
5-1 結論………………………………………………………………………..273
5-1-1基本特性分析及反應動力之結果………………………………….273
5-1-2 ASR固定床催化劑產能效率之結果……………………………….274
5-1-3 ASR流體化床催化氣化產能效率之結果………………………….275
5-1-4污染分佈特性及質量平衡之結果………………………………….275
5-2 建議………………………………………………………………………..276
參考文獻…………………………………………………………………………….277
附錄………………………………………………………………………………….299
附錄一、剩餘ASR之粒徑分佈………………………………………………300
附錄二、剩餘ASR之種類分佈………………………………………………...300
附錄三、樣品A之ln[f(α)/T2]對1/T作圖…………………………………….300
附錄四、樣品B之ln[f(α)/T2]對1/T作圖……………………………………307
附錄五、紙類與文獻(kJ/mol)之比值…………………………………………..313
附錄六、塑膠與文獻(kJ/mol)之比值…………………………………………..313
附錄七、泡棉與文獻(kJ/mol)之比值…………………………………………314
附錄八、纖維與文獻(kJ/mol)之比值…………………………………………..314
附錄九、木與文獻(kJ/mol)之比值……………………………………………..315
附錄十、橡膠與文獻(kJ/mol)之比值…………………………………………..315
參考文獻 Adam, C., Kley, G., Simon, F. G., 2007. Thermal treatment of municipal sewage sludge aiming at marketable P-fertilisers. Materials transactions, 48(12), 3056-3061.
Akiti, T. T., Constant, K. P., Doraiswamy, L. K., Wheelock, T. D., 2002. A regenerable calcium-based core-in-shell sorbent for desulfurizing hot coal gas. Industrial & engineering chemistry research, 41(3), 587-597.
Al-Salem, S. M., Lettieri, P., 2010. Kinetics of Polyethylene Terephthalate (PET) and Polystyrene (PS) Dynamic Pyrolysis. World Academy of Science, Engineering and Technology, 66, 1267-1275.
Apaydin-Varol, E., Polat, S., Putun, A. E., 2014. Pyrolysis kinetics and thermal decomposition behavior of polycarbonate-a TGA-FTIR study. Thermal Science, 18(3), 833-842.
Aqliliriana, C. M., Ernee, N. M., Irmawati, R., 2015. Preparation and Characterization of Modified Calcium Oxide From Natural Sources and Their Application in The Transesterification of Palm Oil. International Journal of Scientific and Technology Research, 4(11), 168-175.
Arena, U., & Di Gregorio, F., 2013. Element partitioning in combustion-and gasification-based waste-to-energy units. Waste management, 33(5), 1142-1150.
Asaoka, S., Yamamoto, T., Kondo, S., Hayakawa, S., 2009. Removal of hydrogen sulfide using crushed oyster shell from pore water to remediate organically enriched coastal marine sediments. Bioresource technology, 100(18), 4127-4132.
Betancourt-Galindo, R., Cabrera Miranda, C., Puente Urbina, B. A., Castaneda-Facio, A., Sanchez-Valdes, S., Mata Padilla, J., Garc’?a Cerda, A., Perera, Y.A., Rodriguez-Fernandez, O. S., 2012. Encapsulation of silver nanoparticles in a polystyrene matrix by miniemulsion polymerization and its antimicrobial activity. ISRN Nanotechnology, 2012.
Bishay, I. K., Abd-El-Messieh, S. L., Mansour, S. H., 2011. Electrical, mechanical and thermal properties of polyvinyl chloride composites filled with aluminum powder. Materials & Design, 32(1), 62-68.
Bodirlau, R., Teaca, C. A., Resmerita, A. M., Spiridon, I., 2012. Investigation of structural and thermal properties of different wood species treated with toluene-2, 4-diisocyanate. Cellulose chemistry and technology, 46(5), 381.
Boughton, B., 2007. Evaluation of shredder residue as cement manufacturing feedstock. Resources, Conservation and Recycling, 51(3), 621-642.
Buasri, A., Chaiyut, N., Loryuenyong, V., Worawanitchaphong, P., Trongyong, S., 2013. Calcium oxide derived from waste shells of mussel, cockle, and scallop as the heterogeneous catalyst for biodiesel production. ScientificWorldJournal, 2013, 460923.
Bystritskaya, E. V., Monakhova, T. V., Ivanov, V. B., 2013. TGA application for optimising the accelerated aging conditions and predictions of thermal aging of rubber. Polymer testing, 32(2), 197-201.
Chen, Z.-M., & Zhang, L., 2015. Catalyst and process parameters for the gasification of rice husk with pure CO2 to produce CO. Fuel Processing Technology, 133, 227-231.
Chen, L., & Bhattacharya, S., 2013. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions. Environmental science & technology, 47(3), 1729-1734.
Chiono, V., Mozetic, P., Boffito, M., Sartori, S., Gioffredi, E., Silvestri, A., Rainer, A., Giannitelli, S.M., Trombetta, M., Nurzynska, S.,Di Meglio, F.,
Castaldo, C., Miraglia, R., Montagnani, S., Ciardelli, G., 2014. Polyurethane-based scaffolds for myocardial tissue engineering. Interface focus, 4(1), 20130045.
Cho, S.-J., Jung, H.-Y., Seo, Y.-C., Kim, W.-H. 2010. Studies on Gasification and Melting Characteristics of Automobile Shredder Residue. ENVIRONMENTAL ENGINEERING SCIENCE, 27, 577-586.
Cho, M. H., Choi, Y. K., Kim, J. S., 2015. Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich producer gas. Energy, 87, 586-593.
Coats, A. W., & Redfern, J. P., 1964. Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68.
Compagnone, G., De Filippis, P., Scarsella, M., Verdone, N., Zeppieri, M., 2006. Heavy metal behaviour during RDF gasification. WIT Transactions on Ecology and the Environment, 92.
Conesa, J. A., Rey, L., Aracil, I., 2016. Modeling the thermal decomposition of automotive shredder residue. Journal of Thermal Analysis and Calorimetry, 124(1), 317-327.
Contat?Rodrigo, L., Ribes?Greus, A., Imrie, C. T., 2002. Thermal analysis of high?density polyethylene and low?density polyethylene with enhanced biodegradability. Journal of applied polymer science, 86(3), 764-772.
Djidjelli, H., Sadoun, T., Benachour, D., 2000. Effect of plasticizer nature and content on the PVC stability and dielectric properties. Journal of applied polymer science, 78(3), 685-691.
Donaj, P., Yang, W., Blasiak, W., Forsgren, C., 2010. Recycling of automobile shredder residue with a microwave pyrolysis combined with high temperature steam gasification. J Hazard Mater, 182(1-3), 80-89.
Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., & Huang, Q., 2015. Partitioning of Heavy Metals in Municipal Solid Waste Pyrolysis, Gasification, and Incineration. Energy & Fuels, 29(11), 7516-7525.
Dou, B., Wang, K., Jiang, B., Song, Y., Zhang, C., Chen, H., Xu, Y., 2016. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. International Journal of Hydrogen Energy, 41(6), 3803-3810.
Duan, G., Zhang, C., Li, A., Yang, X., Lu, L., Wang, X., 2008. Preparation and characterization of mesoporous zirconia made by using a poly (methyl methacrylate) template. Nanoscale research letters, 3(3), 118.
Fernandez-Berridi, M. J., Gonzalez, N., Mugica, A., Bernicot, C., 2006. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochimica Acta, 444(1), 65-70.
Filippis, P., Pochetti, F., Borgianni, C., Paolucci, M. (2003). Automobile shredder residue gasification. Waste management & research, 21(5), 459-466.
Fiore, S., Ruffino, B., & Zanetti, M. C., 2012. Automobile Shredder Residues in Italy: characterization and valorization opportunities. Waste Manag, 32(8), 1548-1559.
Fujita, T., Fukase, M., Miyamoto, H., Matsumoto, T., Ohue, T., 1990. Increase of bone mineral density by calcium supplement with oyster shell electrolysate. Bone and mineral, 11(1), 85-91.
Gai, C., Dong, Y., & Zhang, T., 2014. Downdraft gasification of corn straw as a non-woody biomass: Effects of operating conditions on chlorides distribution. Energy, 71, 638-644.
Ge, Z., Jin, H., & Guo, L., 2014. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal. International Journal of Hydrogen Energy, 39(34), 19583-19592.
Gent, M. R., Menendez, M., Muniz, H., Torno, S., 2015. Recycling of a fine, heavy fluff automobile shredder residue by density and differential fragmentation. Waste Manag, 43, 421-433.
Ghorbel, E., Hadriche, I., Casalino, G., Masmoudi, N., 2014. Characterization of thermo-mechanical and fracture behaviors of thermoplastic polymers. Materials, 7(1), 375-398.
Grammelis, P., Basinas, P., Malliopoulou, A., Sakellaropoulos, G., 2009. Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel, 88(1), 195-205.
Gray, F. M., Smith, M. J., Silva, M. B., 2011. Identification and characterization of textile fibers by thermal analysis. Journal of Chemical Education, 88(4), 476-479.
Gu, J., Wang, Y. Z., Yuan, H. R., Huhe, T. L., Chen, Y., 2017. Influence of Carbon Dioxide on the Thermal Degradation Process of Representative Components of Combustible Solid Wastes Using Thermogravimetric–Mass Spectrometry. Energy & Fuels, 31(8), 8317-8325.
Gu, A., & Liang, G., 2003. Thermal stability and kinetics analysis of rubber?modified epoxy resin by high?resolution thermogravimetric analysis. Journal of applied polymer science, 89(13), 3594-3600.
Gupta, N., Saxena, R. K., Sharma, B., Sharma, S., Agrawal, A. K., Jassal, M., Manchanda, R. K., 2014. Leaching of plastic polymers by plastic vials used for storing homoeopathic medicines: A preliminary study. Indian Journal of Research in Homoeopathy, 8(2), 95.
Hamad, M. A., Radwan, A. M., Heggo, D. A., Moustafa, T., 2016. Hydrogen rich gas production from catalytic gasification of biomass. Renewable Energy, 85, 1290-1300.
Han, L., Zhang, Y., Lin, K., Jia, X., Zhang, H., Zhong, Y., Wang Q., Li, Z., 2017. Developing a novel CaO-based sorbent for promoted CO2 capture and tar reduction. Energy & Fuels, 31(5), 5306-5317.
Hathaway, B. J., Honda, M., Kittelson, D. B., Davidson, J. H., 2013. Steam gasification of plant biomass using molten carbonate salts. Energy, 49, 211-217.
Haydary J., Susa D., Gelinger V., Cacho F., 2016. Pyrolysis of automobile shredder residue in a laboratory scale screw type reactor. Journal of Environmental Chemical Engineering, 4(1), 965-972
Hornsby, P. R., Wang, J., Rothon, R., Jackson, G., Wilkinson, G., Cossick, K., 1996. Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler. Polymer Degradation and Stability, 51(3), 235-249.
Hu, B., Huang, Q., Buekens, A., Chi, Y., Yan, J., 2017. Co-gasification of municipal solid waste with high alkali coal char in a three-stage gasifier. Energy Conversion and Management, 153, 473-481.
Hu, Y., & Ye, L., 2006. Study on the thermal stabilization effect of polyamide on polyoxymethylene. Polymer-Plastics Technology and Engineering, 45(7), 839-844.
Jimenez, A., Berenguer, V., Lopez, J., Sanchez, A., 1993. Thermal degradation study of poly (vinyl chloride): kinetic analysis of thermogravimetric data. Journal of Applied Polymer Science, 50(9), 1565-1573.
Jin, Z., Pramoda, K. P., Xu, G., Goh, S. H., 2001. Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly (methyl methacrylate) composites. Chemical Physics Letters, 337(1), 43-47.
Joung, H. T., Seo, Y. C., Kim, K. H., 2007. Distribution of dioxins, furans, and dioxin-like PCBs in solid products generated by pyrolysis and melting of automobile shredder residues. Chemosphere, 68(9), 1636-1641.
Joung, H. T., Cho, S. J., Seo, Y. C., Kim, W. H., 2007. Status of recycling end-of-life vehicles and efforts to reduce automobile shredder residues in Korea. Journal of Material Cycles and Waste Management, 9(2), 159-166.
Kameda, T., Uchiyama, N., Yoshioka, T., 2011. Removal of HCl, SO2, and NO by treatment of acid gas with Mg–Al oxide slurry. Chemosphere, 82(4), 587-591.
Kandare, E., Deng, H., Wang, D., Hossenlopp, J. M. 2006. Thermal stability and degradation kinetics of poly (methyl methacrylate)/layered copper hydroxy methacrylate composites. Polymers for advanced technologies, 17(4), 312-319.
Karatas, H., Olgun, H., Akgun, F., 2013. Coal and coal and calcined dolomite gasification experiments in a bubbling fluidized bed gasifier under air atmosphere. Fuel processing technology, 106, 666-672.
Kayacan, I., & Do?an, O. M., 2008. Pyrolysis of low and high density polyethylene. Part I: non-isothermal pyrolysis kinetics. Energy Sources, Part A, 30(5), 385-391.
Kebukawa, Y., Nakashima, S., Ishikawa, M., Aizawa, K., Inoue, T., NAKAMURA MESSENGER, K., & Zolensky, M. E., 2010. Spatial distribution of organic matter in the Bells CM2 chondrite using near-field infrared microspectroscopy. Meteoritics & Planetary Science, 45(3), 394-405.
Kihedu, J. H., Yoshiie, R., Naruse, I., 2016. Performance indicators for air and air–steam auto-thermal updraft gasification of biomass in packed bed reactor. Fuel Processing Technology, 141, 93-98.
Kim, Y. S., Choi, Y. M., Noh, D. O., Cho, S. Y., Suh, H. J., 2007. The effect of oyster shell powder on the extension of the shelf life of tofu. Food chemistry, 103(1), 155-160.
Kim, C. S., Jung, K. H., Kim, H., Kim, C. B., Kang, I. K., 2016. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction. Biomaterials Research, 20(1), 23.
Kim, K. H., Joung, H. T., Nam, H., Seo, Y. C., Hong, J. H., Yoo, T. W., Lim, B.S., Park, J. H., 2004. Management status of end-of-life vehicles and characteristics of automobile shredder residues in Korea. Waste Management, 24(6), 533-540.
Kim, K. D., Jeon, S. M., Hasolli, N., Lee, K. S., Lee, J. R., Han, J. W., Kim, H.T., Park, Y. O., 2017. HCl removal characteristics of calcium hydroxide at the dry-type sorbent reaction accelerator using municipal waste incinerator flue gas at a real site. Korean Journal of Chemical Engineering, 34(3), 747-756.
Kondoh, M., Hamai, M., Yamaguchi, M., Mori, S. 2001. Study of gasification characteristics of automobile shredder residue. JSAE review, 2(22), 234-236.
Kumar, G., Mahesh, L., Neelakantan, N. R., Subramanian, N., 1993. Studies on thermal stability and behaviour of polyacetal and thermoplastic polyurethane elastomer blends. Polymer international, 31(3), 283-289.
Kumar, M. N. S., 2007. Thermo gravimetric analysis and morphological behavior of castor oil based polyurethane–polyester nonwoven fabric composites. Journal of applied polymer science, 106(5), 3521-3528.
Kwon, H. B., Lee, C. W., Jun, B. S., Weon, S. Y., Koopman, B., 2004. Recycling waste oyster shells for eutrophication control. Resources, conservation and recycling, 41(1), 75-82.
Lee, Y. M., & Viswanath, D. S., 2000. Degradation of poly (methyl methacrylate)(PMMA) with aluminum nitride and alumina. Polymer Engineering & Science, 40(11), 2332-2341.
Lee, C. H., Truc, N. T., Lee, B. K., Mitoma, Y., Mallampati, S. R., 2015. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent. J Hazard Mater, 296, 239-247.
Lee, C. H., Lee, D. K., Ali, M. A., Kim, P. J., 2008. Effects of oyster shell on soil chemical and biological properties and cabbage productivity as a liming materials. Waste Management, 28(12), 2702-2708.
Lin, K.-S., Chowdhury, S., Wang, Z.-P., 2010. Catalytic gasification of automotive shredder residues with hydrogen generation. Journal of Power Sources, 195(18), 6016-6023.
Liu, X., & Yu, W., 2006. Evaluating the thermal stability of high performance fibers by TGA. Journal of applied polymer science, 99(3), 937-944.
Liu, S., Ye, H., Zhou, Y., He, J., Jiang, Z., Zhao, J., Huang, X., 2006. Study on flame-retardant mechanism of polycarbonate containing sulfonate-silsesquioxane-fluoro retardants by TGA and FTIR. Polymer degradation and stability, 91(8), 1808-1814.
Liu, Y. X., Yang, T. O., Yuan, D. X., Wu, X. Y., 2010. Study of municipal wastewater treatment with oyster shell as biological aerated filter medium. Desalination, 254(1-3), 149-153.
Luftl, S., Archodoulaki, V. M., Seidler, S., 2006. Thermal-oxidative induced degradation behaviour of polyoxymethylene (POM) copolymer detected by TGA/MS. Polymer degradation and stability, 91(3), 464-471.
Lundberg, L., Tchoffor, P. A., Pallares, D., Johansson, R., Thunman, H., Davidsson, K., 2016. Influence of surrounding conditions and fuel size on the gasification rate of biomass char in a fluidized bed. Fuel Processing Technology, 144, 323-333.
Mayyas, M., Mayyas, M., Pahlevani, F., Liu, Z., Rajarao, R., Sahajwalla, V., 2016. From automotive shredder residue to nano-ceramics and graphitic carbon—Thermal degradation kinetics. Journal of analytical and applied pyrolysis, 120, 60-74.
Meng, N., Jiang, D., Liu, Y., Gao, Z., Cao, Y., Zhang, J., Gu, J., Han, Y., 2016. Sulfur transformation in coal during supercritical water gasification. Fuel, 186, 394-404.
Mishra, S. P., & Venkidusamy, P., 1995. Structural and thermal behavior of PC/PBT blends. Journal of applied polymer science, 58(12), 2229-2234.
Morselli, L., Santini, A., Passarini, F., Vassura, I., 2010. Automotive shredder residue (ASR) characterization for a valuable management. Waste Manag, 30(11), 2228-2234.
Murakami, K., Sato, M., Tsubouchi, N., Ohtsuka, Y., Sugawara, K., 2015. Steam gasification of Indonesian subbituminous coal with calcium carbonate as a catalyst raw material. Fuel Processing Technology, 129, 91-97.
Nakatani, N., Takamori, H., Takeda, K., Sakugawa, H., 2009. Transesterification of soybean oil using combusted oyster shell waste as a catalyst. Bioresource Technology, 100(3), 1510-1513.
Namasivayam, C., Sakoda, A., Suzuki, M., 2005. Removal of phosphate by adsorption onto oyster shell powder—kinetic studies. Journal of Chemical Technology and Biotechnology, 80(3), 356-358.
Ni, F., & Chen, M., 2014. Studies on pyrolysis and gasification of automobile shredder residue in China. Waste Manag Res, 32(10), 980-987.
Ni, F., & Chen, M., 2015. Research on ASR in China and its energy recycling with pyrolysis method. Journal of Material Cycles and Waste Management, 17(1), 107-117.
Nzihou, A., & Stanmore, B., 2013. The fate of heavy metals during combustion and gasification of contaminated biomass-a brief review. J Hazard Mater, 256-257, 56-66.
Oh, S. C., Kwon, W. T., Kim, S. R., 2009. Dehydrochlorination characteristics of waste PVC wires by thermal decomposition. Journal of Industrial and Engineering Chemistry, 15(3), 438-441.
Ok, Y. S., Oh, S.-E., Ahmad, M., Hyun, S., Kim, K.-R., Moon, D. H., Lim, K.J., Lee, S.S., Jeon, W.-T., Yang, J. E., 2010. Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 61(6), 1301-1308.
Osada, M., Tanigaki, N., Takahashi, S., Sakai, S. I., 2008. Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process. Journal of material cycles and waste management, 10(2), 93-101.
Parlikad, A. K., & McFarlane, D., 2010. Quantifying the impact of AIDC technologies for vehicle component recovery. Computers & Industrial Engineering, 59(2), 296-307.
Passarini, F., Ciacci, L., Santini, A., Vassura, I., Morselli, L., 2012. Auto shredder residue LCA: implications of ASR composition evolution. Journal of Cleaner Production, 23(1), 28-36.
Peterson, J. D., Vyazovkin, S., Wight, C. A., 2001. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly (propylene). Macromolecular Chemistry and Physics, 202(6), 775-784.
Poskrobko, S., Kro?l, D., ?ach, J., 2012. Hydrogen chloride bonding with calcium hydroxide in combustion and two-stage combustion of fuels from waste. Energy & Fuels, 26(2), 842-853.
Pressler, E. E., Brunauer, S., Kantro, D. L., 1956. Investigation of Franke method of determining free calcium hydroxide and free calcium oxide. Analytical Chemistry, 28(5), 896-902.
Rajakumar, P. R., Nanthini, R., 2011. Thermal and morphological behaviours of polybutylene terephthalate/polyethylene terephthalate blend nanocomposites. Rasayan Journal of Chemistry, 4(3), 567-579.
Ramiah, M. V., 1970. Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. Journal of Applied Polymer Science, 14(5), 1323-1337.
Rantuch, P. E. T. E. R., & Chrebet, T. O. M. A. ?., 2014. Thermal decomposition of cellulose insulation. Cellulose Chem. Technol, 48(5-6), 461-467.
Ratchahat, S., Kodama, S., Tanthapanichakoon, W., Sekiguchi, H., 2015. CO2 gasification of biomass wastes enhanced by Ni/Al2O3 catalyst in molten eutectic carbonate salt. International Journal of Hydrogen Energy, 40(35), 11809-11822.
Roh, S. A., Kim, W. H., Yun, J. H., Min, T. J., Kwak, Y. H., Seo, Y. C., 2013. Pyrolysis and gasification-melting of automobile shredder residue. Journal of the Air & Waste Management Association, 63(10), 1137-1147.
Ruffino, B., Fiore, S., Zanetti, M. C., 2014. Strategies for the enhancement of automobile shredder residues (ASRs) recycling: results and cost assessment.
Run, M., Zhang, D., Wu, S., Wu, G., 2007. Thermal decomposition of poly (ethylene terephthalate)/mesoporous molecular sieve composites. Frontiers of Chemical Engineering in China, 1(1), 50-54.
Sakai, S.-i., Noma, Y., Kida, A., 2007. End-of-life vehicle recycling and automobile shredder residue management in Japan. Journal of Material Cycles and Waste Management, 9(2), 151-158.
Sawyer, C.N., Mccarty, P.L., Parkin, G.F., 2003.Chemistry for environmental engineering and science fifth edition.
Santhoskumar, A. U., Palanivelu, K., Sharma, S. K., Nayak, S. K., 2010. Comparison of biological activity transistion metal 12 hydroxy oleate on photodegradation of plastics. Journal of Bioremediation and Biodegradation, 1(2).
Senthil, R., Sastry, T. P., Saraswathy, G., Das, B. N., Gobi, N., 2018. Leather Insole with Acupressure Effect: New Perspectives. Journal of Polymers and the Environment, 26(1), 175-182.
Serrano, D., Kwapinska, M., Horvat, A., Sanchez-Delgado, S., Leahy, J. J., 2016. Cynara cardunculus L. gasification in a bubbling fluidized bed: The effect of magnesite and olivine on product gas, tar and gasification performance. Fuel, 173, 247-259.
Sevim, F., Demir, F., Bilen, M., Okur, H., 2006. Kinetic analysis of thermal decomposition of boric acid from thermogravimetric data. Korean Journal of Chemical Engineering, 23(5), 736-740.
Siefert, N. S., Shekhawat, D., Litster, S., Berry, D. A., 2013. Steam–Coal Gasification Using CaO and KOH for in Situ Carbon and Sulfur Capture. Energy & Fuels, 27(8), 4278-4289.
Singh, J., & Lee, B. K., 2015. Hydrometallurgical recovery of heavy metals from low grade automobile shredder residue (ASR): An application of advanced Fenton process (AFP). J Environ Manage, 161, 1-10.
Singh, J., Reddy, K. J., Chang, Y.-Y., Kang, S.-H., Yang, J.-K., 2016. A novel reutilization method for automobile shredder residue as an adsorbent for the removal of methylene blue: Mechanisms and heavy metal recovery using an ultrasonically assisted acid. Process Safety and Environmental Protection, 99, 88-97.
Singh, R. K., Biswal, B., Kumar, S., 2013. Determination of activation energy from pyrolysis of paper cup waste using thermogravimetric analysis.
Singh, S., Wu, C., & Williams, P. T., 2012. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterisation techniques. Journal of Analytical and Applied Pyrolysis, 94, 99-107.
Siriwardane, R., Fisher, J. C., Simonyi, T., 2010. Regenerable Multifunctional Sorbent Development for Sulfur and Chloride Removal from Coal-Derived Synthesis Gas. Energy & Fuels, 24(8), 4226-4230.
Sotirchos, S. V., & Smith, A. R., 2004. Performance of porous CaO obtained from the decomposition of calcium-enriched bio-oil as sorbent for SO2 and H2S removal. Industrial & engineering chemistry research, 43(6), 1340-1348.
Sreejith, C. C., Muraleedharan, C., Arun, P., 2015. Air–steam gasification of biomass in fluidized bed with CO2 absorption: A kinetic model for performance prediction. Fuel Processing Technology, 130, 197-207.
Srivastava, S., Srivastava, S., Srivastava, S., La′Verne, S. J., Khan, I. A., Ali, P., Gupta, V. D., 2011. Phonons and heat capacity of polyoxymethylene. Journal of Applied Polymer Science, 122(2), 1376-1381.
Stutzman, P. E., 2001. Scanning Electron Microscopy in Concrete Petrography. National Institute of Standards and Technology.
Su?kowski, W. W., Bartecka, G., Su?kowska, A., Ma?lanka, S., Borek, J., Moczy?ski, M., 2012. Thermogravimetric analysis of composites obtained from polyurethane and rubber waste. Molecular Crystals and Liquid Crystals, 556(1), 39-51.
Sun, Z., Chen, S., Ma, S., Xiang, W., Song, Q., 2016.Simulation of the calcium looping process (CLP) for hydrogen, carbon monoxide and acetylene poly-generation with CO2 capture and COS reduction. Applied Energy, 169, 642-651.
S?yc, M., Pohor?ely?, M., Jeremia?s?, M., Vosecky?, M., Kamenikova, P., Skoblia, S., Svoboda, K., Punc?ocha?r?, M., 2011. Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass. Energy & Fuels, 25(5), 2284-2291.
Takaoka, M., Shiota, K., Imai, G., Oshita, K., 2016. Emission of particulate matter 2.5 (PM 2.5) and elements from municipal solid waste incinerators. Journal of Material Cycles and Waste Management, 18(1), 72-80.
Tanigaki, N., Fujinaga, Y., Kajiyama, H., Ishida, Y., 2013. Operating and environmental performances of commercial-scale waste gasification and melting technology. Waste Management & Research, 31(11), 1118-1124.
Taylor, R., Ray, R., Chapman, C., 2013. Advanced thermal treatment of auto shredder residue and refuse derived fuel. Fuel, 106, 401-409.
Terrill, E. R., Centea, M., Evans, L. R., MacIsaac Jr, J. D., 2010. Dynamic mechanical properties of passenger and light truck tire treads. DOT HS, 811, 270.
Trovati, G., Sanches, E. A., Neto, S. C., Mascarenhas, Y. P., Chierice, G. O., 2010. Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science, 115(1), 263-268.
Van Graan, M., & Bunt, J. R., 2016. Evaluation of A TGA Method to Predict the Ignition Temperature and Spontaneous Combustion Propensity of Coals of Different Rank. In International Conference on Advances in Science, Engineering, Technology and Natural Resources (ICASETNR-16) (pp. 24-25).
Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., Vandecasteele, C. 2011. Automotive shredder residue (ASR): reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals′ valorisation. J Hazard Mater, 190(1-3), 8-27.
Vigano, F., Consonni, S., Grosso, M., Rigamonti, L., 2010. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion. Waste Management, 30(1), 145-153.
Wang, Z., Hong, C., Xing, Y., Li, Y., Feng, L., Jia, M., 2018. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Management.
Wei, L., Yang, H., Li, B., Wei, X., Chen, L., Shao, J., Chen, H., 2014. Absorption-enhanced steam gasification of biomass for hydrogen production: Effect of calcium oxide addition on steam gasification of pyrolytic volatiles. International Journal of Hydrogen Energy, 39(28), 15416-15423.
Westmoreland, P. R., & Harrison, D. P., 1976. Evaluation of candidate solids for high-temperature desulfurization of low-Btu gases. Environmental Science & Technology, 10(7), 659-661.
Yang, E. I., Yi, S. T., Leem, Y. M., 2005. Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties. Cement and Concrete Research, 35(11), 2175-2182.
Yang, E. I., Kim, M. Y., Park, H. G., Yi, S. T., 2010. Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete. Construction and building materials, 24(5), 758-765.
Yang, M. H., 2000. The thermal degradation of acrylonitrile-butadiene-styrene terpolymer under various gas conditions. Polymer testing, 19(1), 105-110.
Yang, X., Li, Q., Chen, Z., Han, H., 2009. Fabrication and thermal stability studies of polyamide 66 containing triaryl phosphine oxide. Bulletin of Materials Science, 32(4), 375.
Yokotsuka, K., Nagao, A., Nakazawa, K., Sato, M., 1999. Changes in anthocyanins in berry skins of Merlot and Cabernet Sauvignon grapes grown in two soils modified with limestone or oyster shell versus a native soil over two years. American journal of enology and viticulture, 50(1), 1-12.
Yoon, G.-L., Kim, B.-T., Kim, B.-O., Han, S.-H., 2003. Chemical–mechanical characteristics of crushed oyster-shell. Waste Management, 23(9), 825-834.
Zhang, J., & Delichatsios, M. M., 2011. TGA maximum heat release rate and mass loss rate and comparison with the cone calorimeter. Fire Safety Science, 10, 1333-1346.
Zhang, W., Liu, H., Ul Hai, I., Neubauer, Y., Schroder, P., Oldenburg, H., Seilkopf, A., Kolling, A., 2012. Gas cleaning strategies for biomass gasification product gas. International Journal of Low-Carbon Technologies, 7(2), 69-74.
Zhao, B., Chen, L., Long, J. W., Chen, H. B., Wang, Y. Z., 2013. Aluminum hypophosphite versus alkyl-substituted phosphinate in polyamide 6: flame retardance, thermal degradation, and pyrolysis behavior. Industrial & Engineering Chemistry Research, 52(8), 2875-2886.
Zheng, Z., Liu, Y., Zhang, L., Wang, H., 2016. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. Journal of Materials Science, 51(12), 5857-5871.
Zhu, H. M., Jiang, X. G., Yan, J. H., Chi, Y., Cen, K. F., 2008. TG-FTIR analysis of PVC thermal degradation and HCl removal. Journal of analytical and applied pyrolysis, 82(1), 1-9.
Jordilabs, Case study FTIR v. pyrolysis mass spectrometry, 2017,URL: https://jordilabs.com
The Plastics Industry Trade Association, Automotive Recycling devalued is now revalued., 2016, URL: http://www.plasticsindustry.org
United States Environmental Protection Agency, Technical approaches to characterizing and cleaning up automotive recycling brownfields, 2002, URL: https://www.epa.gov/
Zevenhoven, R., & Kilpinen, P., Control of pollutants in flue gases and fuel gases, 2004, URL: http://users.abo.fi/rzevenho/gasbook.html
朱東川,廢棄牡蠣殼粉取代水泥及細骨材對水泥砂漿性質之影響,國立雲林科技大學營建工程研究所,碩士論文,雲林,2003。
江康鈺,呂承翰,簡光勵,廢紙排渣衍生燃料催化氣化過程之焦油轉化評估研究,第二十五屆廢棄物處理研討會,P.375,屏東,2010。
林柏丞,添加灰化牡蠣殼粉、大蒜粉、抗性澱粉與燕麥粉對乳化肉丸品質影響之研究,中國文化大學農學院生活應用科學系,碩士論文,台北,2011。
李哲榮,牡蠣殼粉資源化做為水泥膠結材料之研究,國立台灣海洋大學海河工程學系,碩士論文,基隆,2005。
林健佑,添加牡蠣殼及蜆殼廢棄物進行低毒性拜香之研發,嘉南藥理科技大學環境工程與科學系,碩士論文,台南,2013。
林壹鴻,灰化牡蠣殼粉應用於截切蔬菜對其品質影響之研究,中國文化大學農學院生活應用科學系,碩士論文,台北,2008。
陳昕怡,牡蠣殼水溶液業對魚漿、全蛋液之物理化學變化,國立澎湖科技大學食品科學研究所,碩士論文,澎湖,2012。
陳岍汝,牡蠣殼粉溶液對食品及食品接觸面上食品病原菌及組織胺生產菌之清除效果,國立高雄海洋科技大學水產食品科學研究所,碩士論文,高雄,2011。
陳淦政,灰階改質牡蠣殼粉環保鎘熱塗料之熱特性研究,明志科技大學環境與安全衛生工程系,碩士論文,新北,2015。
胡嫻筠,發泡型牡蠣殼水泥版材中和回收雨水水質研究,南亞技術學院材料應用科技研究所,碩士論文,桃園,2011。
賴家煒,牡蠣殼之再利用研究,國立新竹教育大學應用科學系,碩士論文,新竹,2010。
郭文田,蘇德馨,廢牡蠣殼應用於控制性低強度材料可行性之研究,台灣混凝土學會2011年混凝土工程研討會,台南,2011。
行政院農業委員會,農業出版品,96年2月(第176期),2007年,取自http://www.coa.gov.tw/index.php。
行政院環境保護署資源回收管理基金管理會,統計資料,回收量86年-106年, 2018年,取自http://recycle.epa.gov.tw。
指導教授 江康鈺(Kung-Yuh Chiang) 審核日期 2018-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明