博碩士論文 104326012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.226.177.223
姓名 何如珍(Ru-Zhen He)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 雙團聯共聚物之合成與層狀黏土複合材料之製備及其吸持特性之研究
(Layered clay-composite materials with diblock copolymer for enhanced sorption capacity)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,聚合物奈米材料之相關研究蓬勃發展,其中以團聯聚合物(Block copolymer)之研究最受到矚目,研發成果已廣泛被應用於橡膠界面工業、生物相關及光電等產業領域。因此,本研究重點在於自行合成雙團聯共聚物(Diblock copolymer)及選用市售團聯共聚物,分別嵌入層狀黏土之層隙間,形成黏土複合材料,並針對嵌入共聚物進行特性鑑定,經製備完成之團聯共聚物黏土複合材料,再進行對非離子有機污染物(NOCs)及無機重金屬吸持特性作探討。
本研究自行合成M-D及M-A雙團聯聚合物,經由NMR及GPC鑑定確定RAFT聚合法成功合成雙團聯共聚物,並能有效控制分子量分佈(Polymerdispersity index,PDI)。另外與市售雙團聯聚合物分別嵌入層狀黏土所製備之雙團聯共聚物改質黏土,經由特性分析發現,團聯共聚物已成功植入層狀矽酸鹽中,使層隙間距增加且未造成剝離,而有機碳含量也明顯增高,FTIR分析結果亦證實改質黏土表面存在羧基、胺基等官能基。根據重金屬吸附實驗得知帶有羧基之團聯共聚物改質黏土,隨著pH值上升其所帶的負電荷越多,與重金屬的親和力會越高,而在最高pH值時,有最佳的吸附效果。另外,由陰離子污染物吸附實驗可得知帶有胺基之改質黏土,在酸性環境下帶正電,並證明在低pH值時,對陰離子污染物有最佳的親和力。此外,因團聯共聚物之M鏈段具有強疏水性,可大大增加改質黏土的有機碳含量,土壤經改質後對有機污染物之分佈效果明顯較文獻結果佳。本研究製備之團聯共聚物改質黏土經研究結果顯示,確實可達成同時對非離子(BTEX)、陽離子(Pb2+、Zn2+)及陰離子(Cr2O72-)污染物兼具高吸持能力之黏土複合材料。
摘要(英)
In recent years various polymer and nanomaterias have been developed. Among those, block polymers and copolymers are the most concerned for scientists due to their unique natures. Current researches have been widely applied on different areas including rubbers, biomaterials and optoelectronic and semiconductors. Therefore, this research aims at polymerization of diblock copolymer, and clay-composite materials in which polymers are intercalated into interlayer of clay. These clay-composite materials were characterized and confirmed by various analytical techniques. Such clay-composite materials are considered to greatly enhance the distribution of NOCs (Nonionic Organic Compounds), and also to increase the affinity for inorganic pollutants.
The polymerization of diblock copolymer, M-D and M-A, were successfully synthesized by RAFT polymerization method and were confirmed by nuclear magnetic resonance (NMR) spectral analysis. The RAFT polymerization was capable of controling molecular weight distribution effectively which further more confirmed by Gel Permeation Chromatography (GPC) analysis. SAXS X-ray diffraction (XRD) and transmission electron microscope (TEM) were used for studying intercalated materials in the silicate. The results showed that diblock copolymers are intercalated into interlayer of clay, and maintain the structure of silicate layer. Organic carbon content by wet oxidation method indicated this successful modification. As depicted in the FT-IR spectrum, the clay composite materials displayed specific functional group of diblock copolymer. The results showed that adsorption capacity increased with increasing pH value. The dimethylaminoethyl methacrylate can be protonated (positively charged) function as anionic pollutants adsorbent. The results also provided the affinity of modified clay for Cr2O72- is increased owing to the occurrence of negative zeta potential. Thus, clay-composite material can possesses both positive and negative charges and thus can act as dual sorbents for both cationic and anionic pollutants. Sorption of BTEX by modified soil indicated that distribution coefficient of BTEX is inversely proportional to their water solubility. The diblock copolymer modifiers improved the distribution ability of nonionic organic compounds was also shown in this study.
關鍵字(中) ★ 團聯共聚物
★ 改質黏土
★ BTEX
★ RAFT聚合法
★ Cr2O72-
關鍵字(英) ★ Diblock copolymer
★ Interlayer
★ Modification
★ BTEX
★ RAFT polymerization
★ Clay-composite material
★ Cr2O72-
論文目次
目 次 頁次
目 錄 I
圖目錄 IV
表目錄 VIII
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的與內容 3
第二章 文獻回顧 4
2-1 團聯共聚物及其理化特性 4
2-1-1 何謂團聯共聚物 4
2-1-2 團聯共聚物的微胞化行為 6
2-1-3 pH對團聯共聚物的影響 7
2-2 團聯共聚物之合成和應用 8
2-2-1 團聯共聚物之合成 8
2-3 層狀黏土之分散與有機化合物修飾 13
2-3-1 層狀矽酸鹽結構 13
2-3-2 層狀黏土之分散型態 14
2-3-3 層狀黏土之有機化合物修飾 16
2-4 共聚物於層狀黏土層隙間之反應機制與製備 17
2-4-1 共聚物與黏土間的作用力及反應機制 17
2-4-2 高分子/層狀黏土複合材料之製備 18
2-5 土壤對污染物之吸持作用 (sorption) 20
2-5-1 吸附理論 (adsorption) 20
2-5-2 分佈理論 (partitioning) 21
2-5-3 等溫吸附模式 24
2-5-4 等溫吸附曲線 26
第三章 研究方法 29
3-1 研究內容與流程 29
3-2 實驗設備 31
3-3 實驗材料 34
3-3-1 不含有機質土壤 34
3-3-2 有機改質劑 35
3-3-3 團聯共聚物單體之選擇 35
3-3-4 非離子性有機污染物 37
3-3-5 重金屬標準品 38
3-3-6 溶劑 38
3-4 實驗方法 39
3-4-1 團聯共聚物合成實驗 39
3-4-2 高分子/層狀矽酸鹽複合土壤之製備 42
3-4-3 高分子/層狀矽酸鹽複合材料對污染物之吸持實驗 43
第四章 結果與討論 46
4-1 預聚合團聯共聚物之特性分析 46
4-1-1 團聯共聚物之GPC分子量分析 46
4-1-2 團聯共聚物之NMR結構鑑定 49
4-2 改質黏土之物化特性分析 53
4-2-1 小角度X光繞射分析( SAXS ) 54
4-2-2 穿透式電子顯微鏡( TEM ) 59
4-2-3 比表面積、平均孔徑與孔徑分佈 63
4-2-4 有機碳含量測定 67
4-2-5 紅外線光譜( FTIR ) 68
4-3 團聯共聚物改質黏土對金屬之吸附 73
4-3-1 帶有羧基之改質黏土對吸附之影響 73
4-3-2 帶胺基之改質黏土對重金屬之吸附 81
4-4 團聯共聚物改質黏土對有機污染物之吸持作用 87
4-4-1 不同有機污染物(BTEX)之吸持行為 88
4-4-2 不同改質黏土對BTEX吸持之影響 92
4-4-3 改質黏土對BETX分佈常數之影響 95
4-5 改質土壤對無機陰離子之吸附作用 100
4-5-1 帶有胺基之改質黏土對吸附實驗之影響 100
第五章 結論與建議 105
5-1 結論 105
5-2 建議 106
參考文獻 108
參考文獻

1. Stephen A. Boyd, Jiunn-Fwu Lee, Max M. Mortland, “Attenuating Organic Contaminant Mobility by Soil Modification”, Nature, 333,345-347 (1988)
2. 石健忠、戴子安,“團聯型高分子自組裝—剛強和柔軟的結合”,科學發展,476 (2012)
3. Schacher, Felix H., Paul A. Rupar, and Ian Manners, “Functional Block Copolymers: Nanostructured Materials with Emerging Applications”, Angewandte Chemie International Edition, 51, (2012)
4. 袁菁、陳威錦、江姿幸,“受苯系有機物污染土壤以電動力-界面活性劑系統處理之研究”,國科會研究計畫(2000)
5. Binbin Xu, Wenqiang Yao, Yongjun Li, Sen Zhang & Xiaoyu Huang, “Perfluorocyclobutyl Aryl Ether-Based ABC Amphiphilic Triblock Copolymer”, Scientific Reports, 6, (2016)
6. Yan Liu , Jianbo Li, Jie Ren, Chao Lin, Junzhao Leng, “Preparation and in vitro pH-responsive drug release of amphiphilic dendritic star-block copolymer complex micelles”, Materials Letters, 127, 8-11 (2014)
7. Yukiko Ogawa, Kazuyoshi Ogawa, and Etsuo Kokufuta, “Swelling-Shrinking Behavior of a Polyampholyte Gel Composed of Positively Charged Networks with Immobilized Polyanions. ”, Langmuir, 20, 2546-2552 (2004)
8. Qingqing Bian, Yan Xiao, Chen Zhou, Meidong Lang, “Synthesis, self-assembly, and pH-responsive behavior of (photo-crosslinked) star amphiphilic triblock copolymer”, Journal of Colloid and Interface Science, 392, 141-150 (2013)
9. 辜佩儀,“合成雙親性團聯共聚合物並製備蜂窩狀多孔性薄膜”,碩士論文,國立交通大學應用化學系所,(2006)
10. Dotsevi Y. Sogah, Walter R. Hertler, Owen W. Webster, and Gordon M. Cohen, “Group Transfer Polymerization. Polymerization of Acrylic Monomers”, Macromolecules, 20, 1473-1488 (1987)
11. Eleni Kassi, Michalis S. Constantinou, Costas S. Patrickios, “Group transfer polymerization of biobased monomers”, European Polymer Journal, 49, 761–767 (2013)
12. Maria D. Rikkou, Costas S. Patrickios, “Polymers prepared using cleavable initiators: Synthesis, characterization and degradation” , Progress in Polymer Science, 36, 1079–1097 (2011)
13. 陳 暉,“甲基丙烯酸酯系列團聯共聚物為界面活性劑之迷你乳化聚合研究”,博士論文,國立中央大學化學工程研究所 (2000)
14. John Chiefari, Y. K. (Bill) Chong, Frances Ercole, Julia Krstina, Justine Jeffery, Tam P. T. Le, Roshan T. A. Mayadunne, Gordon F. Meijs, Catherine L. Moad, Graeme Moad, Ezio Rizzardo, and San H. Thang, “Living Free-Radical Polymerization by Reversible Addition-Fragmentation Chain Transfer: The RAFT Process”, Macromolecules, 31, 5559-5562 (1998)
15. Perrine Bordes, Eric Pollet, Luc Averous, “Nano-biocomposites: Biodegradable polyester/nanoclay systems”, Progress in Polymer Science, 34, 125–155 (2009)
16. Ray, Suprakas Sinha, and Masami Okamoto, “Polymer/layered silicate nanocomposites: a review from preparation to processing”, Progress in polymer science., 28, 1539–1641 (2003)
17. Michael Alexandre, Philippe Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials”, Materials Science and Engineering, 28, 1-63 (2000)
18. 蔡宗燕,“奈米黏土-高分子複合材料之發展與應用”, 工研院化學工業研究所無機與固態化學研究室,(2001)
19. Pavlidou, S., and C. D. Papaspyrides, “A review on polymer–layered silicate nanocomposites”, Progress in Polymer Science, 33, 1119–1198 (2008)
20. Karickhoff, Samuel W., David S. Brown, and Trudy A. Scott , “sorption of hydrophobic pollutants on natural sediments”, Water research, Vol. 13, 241-248 (1979)
21. Chiou, Cary T., Thomas D. Shoup, and Paul E. Porter., “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions”, Organic Geochemistry., 8, 9-14 (1985)
22. Lee, Jiunn Fwu, James R. Crum, and Stephen A. Boyd, “Enhanced Retention of Organic Contaminants by Soils Exchanged with Organic Cations”, Environmental Science  Technology., 23,1365-1372 (1989)
23. Michael Alexandre, Philippe Dubois, “Polymer-layered silicate nanocomposites: preparation, propertiesand uses of a new class of materials”, Materials Science and Engineering, 28, 1-63 (2000)
24. Fukushima, Y., Okada, A., Kawasumi, M., Kurauchi, T., & Kamigaito, O, “Swelling behaviour of montmorillonite by poly-6-amide”, Clay minerals, 23, 27-34 (1988)
25. 徐茂展,“環氧樹脂/蒙脫土奈米複合材料之性質的探討”,碩士論文,東海大學化學工程學系,(2007)
26. Pavlidou, S., and C. D. Papaspyrides, “A review on polymer-layered silicate nanocomposites”, Progress in Polymer Science, 33, 1119–1198 (2008)
27. Richard A. Vaia and Emmanuel P. Giannelis , “Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates”, Macromolecules, 30 (25), 7990–7999 (1997)
28. Wang Xiao-Ying, Liu Bo, Tang Yu-Feng, Su Han-Jie, Han Yang, Sun Run-Cang, “New Progress on Rectorite/Polymer Nanocomposites”, Journal of Inorganic Materials, 02, (2012)
29. Lambert, Sheldon M., “Functional Relationship Between Sorption in Soil and Chemical Structure”, Journal of Agricultural and Food Chemistry, 15, 572-576 (1989)
30. Lambert, S. M., P. E. Porter, and R. H. Schieferstein, “Movement and Sorptionof Chemicals Applied to the Soil”, Weeds, 13, 185-190 (1965)
31. Chiou, Cary T., Louis J. Peters, and Virgil H. Freed,“A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, 206, 831-832 (1979)
32. 林芳伃,“多重功能改質黏土之吸持與催化特性研究”,碩士論文,國立中央大學環境工程研究所,(2012)
33. Chiou, Cary T., “Partition and Adsorption of rganic Contaminants in Environmental Systems”, John Wiley & Sons, (2003)
34. Chiou, Cary T., Louis J. Peters, and Virgil H. Freed, “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds”, Science, 206, 831-832 (1979)
35. Chiou, Cary T., Paul E. Porter, and David W. Schmedding, “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water”, Environmental Science & Technology., 17, 227-231 (1983)
36. Means, J. C., Wood, S. G., Hassett, J. J., & Banwart, W. L., “Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils”, Environmental Science & Technology, 14, 1524-1528 (1980)
37. Grathwohl, Peter, “Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: implications on Koc correlations”, Environmental Science & Technology, 24, 1687-1693 (1990)
38. Murphy, Ellyn M., John M. Zachara, and Steven C. Smith, “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds”, Environmental Science & Technology, 24, 1507-1516 (1990)
39. Xing, Baoshan, William B. McGill, and Marvin J. Dudas, “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity”, Chemosphere, 28, 145-153, (1994)
40. Ruthven, Douglas M, “Principles of Adsorption and Adsorption Process”, John Wiley & Sons (1984)
41. Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E., “ On a Theory of the van der Waals Adsorption of Gases”, Journal of the American Chemical society, 62, 1723 (1940)
42. 陳宣亘,“多重功能有機層柱改質黏土之製備與吸持特性之研究”,博士論文,國立中央大學環境工程研究所,(2017)
43. Gulnaziya Issabayeva, Mohamed Kheireddine Aroua, Nik Meriam Nik Sulaiman, “Removal of lead from aqueous solutions on palm shell activated carbon”, Bioresource Technology, 97, 2350-2355(2006)
44. Carrott, P. J. M., Carrott, M. R., Nabais, J. M. V., & Ramalho, J. P., “Influence of surface ionization on the adsorption of aqueous zinc species by activated carbons”, Carbon, 35, 403-410 (1997)
45. Jae-Woo Choia, Ki-Seok Yangb, Dong-Ju Kima,Cheol Eui Leec, “Adsorption of zinc and toluene by alginate complex impregnated with zeolite and activated carbon”, Current Applied Physics, 9, 694–697 (2009)
46. Wang, Xue-song, and Yong Qin., “Equilibrium sorption isotherms for of Cu2+ on rice bran”, Process Biochemistry, 40, 677-680 (2005)
47. Sulaymon, Abbas H., Balasim A. Abid, and Jenan A. Al-Najar,”Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers”, Chemical Engineering Journal, 155, 647-653 (2009)
48. Erdem, E., N. Karapinar, and R. Donat, “The removal of heavy metal cations by natural zeolites.”, Journal of colloid and interface science, 280, 309–314 (2004)
49. Jiunn-Fwu Lee, Ming-Hung Hsu, Huan-Ping Chao, Hui-Chen Huang, Shun-Ping Wang, “The effect of surfactants on the distribution of organic compounds in the soil solid/water system”, Journal of hazardous materials, 114, 123–130 (2004)
50. Feng Xua, Xinmiao Lianga, Bingcheng Lina, Karl-Werner Schrammb, Antonius KettruPb,“Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent”, Journal of Chromatography A, 968, 7–16 (2002)
51. Jiunn-Fwu Lee, Yi-Tang Changa, Huan-Ping Chaob, Hui-Chen Huanga, Ming-Hung Hsua, “Organic compound distribution between nonionic surfactant solution and natural solids: applicability of a solution property parameter”, Journal of Hazardous Materials, 129, 282–289 (2006)
52. Santos, Vanessa Cristina Gonçalves Dos, “Highly improved chromium (III) uptake capacity in modified sugarcane bagasse using different chemical treatments. ”, Química Nova, 35(8), 1606-1611 (2012)
53. C. Quintelas, B. Fernandes, J. Castro, H. Figueiredo, T. Tavares, “Biosorption of Cr(VI) by a Bacillus coagulans biofilm supported on granular activated carbon (GAC)”, Chemical Engineering Journal, 136, 195–203 (2008)
54. Rai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N., “Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4”, Resource-Efficient Technologies, Vol. 2, S63–S70 (2016)
55. Varsha Srivastavaa, Tomas Kohoutb, Mika Sillanpääa, “Potential of cobalt ferrite nanoparticles (CoFe2O4) for remediation of hexavalent chromium from synthetic and printing press wastewater, Journal of Environmental Chemical Engineering , 4 (3), 2922–2932 (2016)
指導教授 李俊福(Jiunn-Fwu Lee) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明