博碩士論文 104326601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.141.25.30
姓名 吳氏玉蘭草(Ngo Thi Ngoc Lan Thao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究
(Enhanced syngas quality and trace pollutants removal efficiency in rice straw gasification with hot gas cleaning)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估
★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究★ 淨水污泥與漿紙污泥煅燒灰共同製備輕質化 材料之抗菌特性評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在於探討稻稈氣化與結合熱氣體淨化(Hot gas cleaning)過程,相關反應動力特性、提昇產氫效率、微量污染物去除、微量金屬分佈特性,以及預測形成之物種。本研究採用氣泡式流體化床氣化爐,控制條件包括氣化反應溫度800 °C及當量比0.2~0.4。熱氣體淨化系統主要由沸石、煅燒白雲石及活性碳所組成,操作溫度控制在250 °C。為進一步探討熱氣體淨化系統之性能,本研究亦嘗試使用自製鎳基催化劑取代沸石,同時評估試驗吸附劑之吸附容量及其再生性能。
根據動力學分析結果顯示,在稻稈裂解及氣化條件下,活化能分別為75.40 kJ/mol及89.56 kJ/mol。在稻稈裂解/氣化過程中,主要氣相產物為一氧化碳、二氧化碳、甲烷、氯化氫、二氧化硫、脂肪烴、乙酸及一些微量氣體化合物,如酚及甲醇等。利用熱氣體淨化系統提昇產氣之氫氣濃度,結果顯示可從6.82%增加至9.83%。在控制當量比0.2之條件下,合成氣最大之低位發熱量,約為6.09 MJ/Nm3。同時研究結果指出,熱氣體淨化系統可成功應用在微量污染物去除。其中利用熱氣體淨化系統對整體焦油去除效率,趨近於70%,氯化氫及硫化氫去除效率,則分別約95%及80%。此外,為探討熱氣體淨化系統對提昇產氫及焦油產量最小化之影響,研究以自製鎳基催化劑取代沸石進行評估。研究結果顯示,當沸石催化劑及熱氣體溫度從250 劑調整至400 ℃時,氫氣及一氧化碳分別由7.31%及14.57%增加至8.03%及17.34%,而焦油去除效率則在70%至90%之間變動。當使用沸石取代自製鎳基催化劑及熱氣體淨化系統溫度控制在250 ℃時,氫氣含量顯著地從6.63%增加至12.24%,此係由於碳氫化合物(焦油)及甲烷含量減少。
在氣相中微量金屬鋅、鉻、鎘及鉛之分佈比例,隨著當量比增加而增加。根據XRD物種鑑定分析結果顯示,粒狀物之物種晶相分別為SiO2、KClO3、K2SO4、K2Si4O9、CdSiO3、PbCl2及Pb8Zn(SiO7)3。另熱動力平衡模擬結果顯示,稻稈氣化主要之氣相物種包括KCl(g)、NaCl(g)、KO(g)、K2O(g)、ZnCl2(g)、CrO2Cl2(g)、CuCl2(g)、PbCl2(g)、PbO(g)及Cd(g)。此外,熱氣體淨化系統對於金屬去除之效率比較,依序為K>Cr>Ca>Pb>Mg>Cd>Na>Zn>Cu,另活性碳對於Pb、Cd、Cr、Ca、K及Mg,具有較佳的吸附性能。
熱氣體淨化系統中各吸附劑對於硫化氫吸附容量之結果顯示,其吸附容量依序為活性碳>煅燒白雲石>沸石,其中沸石、煅燒白雲石及活性碳之吸附容量,分別為每公克吸附劑可吸附2.22, 3.16以及 5.88 mg 硫含量。此外,經過四次吸附再生循環試驗,沸石及活性碳在350 °C操作條件下,可達完全再生之效果,且持續具有穩定的硫吸附容量。本研究使用之三種吸附劑,其硫化氫及氯化氫之貫穿及飽合曲線極為迥異,其中氯化氫之最佳吸附性能,主要由白雲石及沸石所提供,至於硫化氫之最佳吸附性能,則以活性碳為主。整體而言,本研究稻稈氣化處理過程結合熱氣體淨化系統,可有效改善稻稈氣化產氣之氣體品質,及減少微量污染物排放,研究成果同時可提供研究者獲得更多合成氣污染控制之重要資訊。
摘要(英) This study investigates the kinetic behavior, enhanced hydrogen yield efficiency, trace pollutants removal, trace metals partitioning characteristics, and speciation formation prediction in rice straw gasification combined with hot gas cleaning (HGC). A bubbling fluidized bed gasifier was used by controlling the temperature at 800 °C and equivalence ratio (ER) ranging from 0.2 to 0.4. The hot gas cleaning system consists of zeolite, calcined dolomite, activated carbon, and operated at 250 °C. To further determine the HGC system performances, the prepared Ni-based catalyst was replaced for zeolite as an adsorbent in the HGC system. The tested adsorbents capacity and regeneration performances were also studied in this research.
The kinetic behaviors result shows the activation energy of rice straw is 75.40 kJ/mol and 89.56 kJ/mol under pyrolysis and gasification conditions, respectively. The main gas phases that occur during rice straw pyrolysis/gasification include CO, CO2, CH4, HCl, SO2, aliphatic hydrocarbons, CH3COOH, and some trace gas compounds containing phenol, methanol, etc. The hydrogen concentration of produced gas was also increased from 6.82% to 9.83% with the HGC system used. The maximum syngas LHV was approximately 6.09 MJ/Nm3 as ER controlled at 0.2. Meanwhile, the experimental results indicated that the HGC system for removing trace pollutants has successfully developed. The overall tar removal efficiency was nearly 70% by the HGC system. The HCl and H2S removal efficiencies were approximately 95% and 80%, respectively. Moreover, the enhancing H2 generation and minimizing tar yield using the HGC system combined with prepared Ni-based catalyst was investigated. When zeolite catalyst and hot gas temperature were adjusted from 250 ℃ to 400 ℃, H2 and CO increased slightly from 7.31% and 14.57% to 8.03% and 17.34%, respectively. The tar removal efficiency varies in the 70% to 90% range. When the zeolite was replaced with prepared Ni-based catalysts and HGC operated at 250 ℃, H2 contents were significantly increased from 6.63% to 12.24% resulting in decreasing the hydrocarbon (tar), and methane content.
The trace metals Zn, Cr, Cd, and Pb partitioning in the gas phase were increased with equivalence ratio increased. The crystalline phases of some elements in the particulates were found as SiO2, KClO3, K2SO4, K2Si4O9, CdSiO3, PbCl2, and Pb8Zn(SiO7)3 by XRD identification. The thermodynamic equilibrium simulation results confirmed the dominant gaseous species produced from rice straw gasification, such as KCl(g), NaCl(g), KO(g), K2O(g), ZnCl2(g), CrO2Cl2(g), CuCl2(g), PbCl2(g), PbO(g), and Cd(g). Besides, the metals removal by the hot gas cleaning system was found in decreasing order as: K > Cr > Ca > Pb > Mg > Cd > Na > Zn > Cu. Activated carbon showed a good performance for adsorbing Pb, Cd, Cr, Ca, K, and Mg.
The H2S adsorption capacity order decreased as the activated carbon > calcined dolomite > zeolite. The adsorption capacity of zeolite, calcined dolomite, and activated carbon are 2.22, 3.16, 5.88 mg S/g adsorbents, respectively. In addition, the tested zeolite and activated carbon could be fully regenerated at 350 °C with a stable sulfur adsorption capacity during four adsorption regeneration cycles. In this study, breakthrough curves obtained with several adsorbents for H2S and HCl were shown. Very different breakthrough and saturation times were observed. About HCl, the best adsorption performance was obtained with calcined dolomite and zeolite, in the case of H2S, the best adsorption performance was obtained with activated carbon. In conclusion, the HGC system is proposed as an effective way for improving the syngas quality and reducing trace contaminants emission in rice straw gasification. The results gained from this study could significantly support researchers obtaining more information about the control of syngas contaminants.
關鍵字(中) ★ 稻稈
★ 氣化
★ 熱氣體淨化系統
★ 金屬物種及分佈特性
★ 硫化氫
★ 氯化氫
關鍵字(英) ★ Rice straw
★ gasification
★ hot gas cleaning system
★ metal speciation and partitioning
★ hydrogen sulfide
★ hydrogen chloride
論文目次 摘要 ii
Abstract i
Acknowledgments iii
Table of contents vii
List of figures xi
List of tables xv
Chapter 1 Introduction 1
Chapter 2 Literature Review 7
2-1 Overview of rice straw 7
2-1-1 Current status of rice straw in Taiwan 7
2-1-2 Rice straw chemical properties 9
2-1-3 Rice straw treatment techniques 11
2-2 Fundamentals of biomass gasification 12
2-2-1 Biomass gasification 12
2-2-2 Gasification stages 14
2-2-3 Type of gasifiers 18
2-2-4 Industrial application and experiences on fluidized bed gasifier 20
2-3 Syngas contaminants 21
2-3-1 Tar 21
2-3-2 Hydrogen chloride and hydrogen sulfide contaminants 23
2-3-3 Trace metals contaminants 25
2-4 Biomass gasification syngas cleanup 26
2-4-1 Gas cleaning technologies 26
2-4-2 Catalyst conversion 27
2-4-3 Hot gas cleanup application on contaminants removal 34
2-4-4 Adsorbents for H2S, HCl removal 36
Chapter 3 Materials and methods 41
3-1 Experimental materials 41
3-1-1 Rice straw 41
3-1-2 Adsorbents 42
3-2 Experimental methods 43
3-2-1 Experimental instruments 43
3-2-2 Experimental operating conditions 46
3-2-3 Syngas and trace contaminants analysis 49
3-2-4 Kinetic analysis 50
3-2-5 Adsorption capacity experimental set-up 53
3-3 Analysis parameters and methods 57
3-3-1 Physical and chemical properties of rice straw 57
3-3-2 The basic characteristic of adsorbents 61
3-3-3 Gasification product analysis 64
3-3-4 Evaluation of energy yield and trace contaminant removal 66
3-3-5 Thermodynamic equilibrium calculation 67
Chapter 4 Results and discussion 71
4-1 Materials characterization 71
4-1-1 Biomass characterization 71
4-1-2 Adsorbents characterization 71
4-2 Thermodynamic analysis of rice straw 73
4-2-1 Analysis results of thermal kinetic 73
4-2-2 Gaseous species comparison 75
4-2-3 Characterization of the gas involved during the thermal degradation 81
4-3 Improving the syngas quality with HGC system 88
4-3-1 Syngas composition 88
4-3-2 Gasification products distribution 91
4-4 Enhancing the trace pollutants removal efficiency with the HGC system 93
4-4-1 Tar removal 93
4-4-2 H2S and HCl removal 95
4-4-3 Partitioning of major and trace elements in the fluidized bed 97
4-4-4 Metal speciation identification and simulation 103
4-4-5 Removal of tested metals by HGC system 111
4-5 Ni-based catalyst replacement effects 114
4-5-1 Characteristic of zeolite and prepared catalyst 114
4-5-2 Ni-based catalyst replacement effects 119
4-5-3 Ni-based catalyst deactivation 126
4-5-4 Comparison of the adsorbents 128
4-6 H2S adsorption of zeolite, calcined dolomite, and activated carbon 131
4-6-1 H2S removal 131
4-6-2 H2S adsorption capacity of adsorbents 132
4-6-3 Comparisons of physicochemical characteristics of adsorbents before and after adsorption tests 135
4-6-4 Proposed mechanism 143
4-6-5 Durability test 145
4-7 HCl absorption of zeolite, calcined dolomite, and activated carbon 147
4-7-1 HCl sorption capacities 147
4-7-2 Characteristics of absorbents after HCl absorption 151
4-7-3 Chloride release by a thermodynamic equilibrium model 155
Chapter 5 Conclusions and Recommendations 157
5-1 Conclusions 157
5-1-1 Rice straw degradation behavior 157
5-1-2 Hydrogen production and trace pollutants removal 157
5-1-3 The migration, transformation of trace metals 158
5-1-4 Replace prepared Ni-based catalyst 158
5-1-5 H2S and HCl sorption behavior 159
5-2 Recommendations 160
References 161
Publication list 187
參考文獻 Abdoulmoumine, N., Adhikari, S., Kulkarni, A., Chattanathan, S., 2015. A review on biomass gasification syngas cleanup. Appl. Energy. 155, 294-307.
Abdoulmoumine, N., Kulkarni, A., Adhikari, S., 2014. Effects of temperature and equivalence ratio on pine syngas primary gases and contaminants in a bench-scale fluidized bed gasifier. ‎Ind. Eng. Chem. Res. 53, 5767-77.
Abu, E.R.Z., Bramer, E.A., Brem, G., 2004. Review of catalysts for tar elimination in biomass gasification processes. Ind. Eng. Chem. Res. 43, 6911-9.
Adnan, M.A., Adamu, S., Muraza, O., Hossain, M.M., 2018. Fluidizable NiO-Fe2O3/SiO2-Al2O3 for tar (toluene) conversion in biomass gasification. Process Saf. Environ. 116, 754-62.
Agricultural Department of Chiayi County, agriculture.cyhg.gov.tw (access date: 13 December 2016)
Ahmad, A.A., Zawawi, N.A., Kasim, F.H., Inayat, A., and Khasri, A., 2016. Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation. Renew. Sust. Energ. Rev. 53, 1333-47.
Al-Awadi, A.S., El-Toni, A.M., Al-Zahrani, S.M., Abasaeed, A.E., Alhoshan, M., Khan, A., Labis, J.P., Al-Fatesh, A., 2019. Role of TiO2 nanoparticle modification of Cr/MCM41 catalyst to enhance Cr-support interaction for oxidative dehydrogenation of ethane with carbon dioxide. Appl. Catal. A-Gen. 584.
Alcañiz-Monge, J., Cazorla-Amorós, D., Linares-Solano, A., 2001. Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation. Fuel 80, 41-8.
Alothman, Z., 2012. A Review: Fundamental Aspects of Silicate Mesoporous Materials. Mater.5, 2874-902.
Al-Rahbi, A.S., Williams, P.T., 2017. Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char. Appl. Energy. 190, 501-9
Amin, R., Liu, B., Ullah, S., Biao, H.Z., 2017. Study of coking and catalyst stability over CaO promoted Ni-based MCF synthesized by different methods for CH4/CO2 reforming reaction. Int. J. Hydrogen Energ. 42, 21607-16.
Anuwattana, R., Phungngamphan, P., Chawakitchareon, P., 2018. The efficiency of carbon dioxide and hydrogen sulphide adsorption using impregnated granular activated carbon and zeolite. J. Phys. Sci. 29, 29-36.
Arena, U., 2012. Process and technological aspects of municipal solid waste gasification, A review. Waste Manage. 32, 625-39.
Artetxe, M., Alvarez, J., Nahil, M.A., Olazar, M., Williams, P.T., 2017. Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts. Energy Convers. Manag. 136, 119-26.
Atmadeep, B., Anirban, D., Amitava, D., 2014. Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification, Energy 69, 525-33.
Aydin, E.S., Yucel, O., Sadikoglu, H., 2019. Experimental study on hydrogen-rich syngas production via gasification of pine cone particles and wood pellets in a fixed bed downdraft gasifier. Int. J. Hydrog. Energy 44, 17389-96.
Bakar R.A., and Yahya, R., 2016. Production of high purity amorphous silica from rice husk, Procedia Chem. 19, 189-95.
Baker, E.G., and Mudge, L.K., 1987. Catalytic tar conversion in coal gasification systems. ‎Ind. Eng. Chem. Res. 26, 1390-5.
Bandosz, T.J. 2002. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures. ‎J. Colloid Interface Sci. 246, 1-20.
Bartocci, P., Anca-Couce, A., Slopiecka, K., Nefkens, S., Evic, N., Retschitzegger, S., Barbanera, M., Buratti, C., Cotana, F., Bidini, G., Fantozzi, F., 2017b. Pyrolysis of pellets made with biomass and glycerol: Kinetic analysis and evolved gas analysis, Biomass Bioenerg. 97, 11-9.
Bartocci, P., Barbanera, M., D′Amico, M., Laranci, P., Cavalaglio, G., Gelosia, M., Ingles, D., Bidini, G., Buratti, C., Cotana, F., Fantozzi, F., 2017a. Thermal degradation of driftwood: Determination of the concentration of sodium, calcium, magnesium, chlorine and sulfur containing compounds, Waste Manage. 60, 151-7.
Bassani, A., Pirola, C., Maggio, E., Pettinau, A., Frau, C., Bozzano, G., Pierucci, S., Ranzi, E., Manenti, F., 2016. Acid gas to syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production, Appl. Energ. 184, 1284-91.
Basu, P., 2013. Biomass gasification, pyrolysis and torrefaction: Practical design and theory. biomass gasification, pyrolysis and torrefaction: Practical design and theory.1-530.
Benhima, H., Chiban, M., Sinan, F., Seta, P., Persin, M., 2008. Removal of lead and cadmium ions from aqueous solution by adsorption onto micro-particles of dry plants, Colloid surface B. 61, 10-6.
Benito Abascal, M., Bläsing, M., Ninomiya, Y., Müller, M., 2016a. Influence of steam, hydrogen chloride, and hydrogen sulfide on the release and condensation of zinc in gasification, Ind. Eng. Chem. Res. 55, 6911-21.
Benito Abascal, M., Bläsing, M., Ninomiya, Y., Müller, M., 2016b. Influence of steam, hydrogen chloride, and hydrogen sulfide on the release and condensation of cadmium in gasification. ‎ Energ. Fuel. 30, 943-53.
Berrueco, C., Woolcock, P.J., Johnston, P.A., Brown, R.C., 2015. Experimental investigation of solid recovered fuel (SRF) gasification: Effect of temperature and equivalence ratio on process performance and release of minor contaminants. Energ. Fuel. 29, 7419-27.
Bhattacharya, A., Das, A., Datta, A., 2014. Exergy based performance analysis of hydrogen production from rice straw using oxygen blown gasification. Energy. 69, 525-33.
Björkman, E. and Strömberg, B. 1997. Release of chlorine from biomass at pyrolysis and gasification conditions1. Energ. Fuel. 11, 1026-32.
Bläsing, M., Nazeri, K., Müller, M., 2014. Release of alkali metal, sulphur and chlorine species during high-temperature gasification and co-gasification of hard coal, refinery residue, and petroleum coke, Fuel. 126, 62-8.
Bläsing, M., Zini, M., Müller, M., 2013. Influence of feedstock on the release of potassium, sodium, chlorine, sulfur, and phosphorus species during gasification of wood and biomass shells, Energ. Fuel. 27, 1439-45.
Blázquez, G., Pérez, A., Iáñez-Rodríguez, I., Martínez-García, C., Calero, M., 2019. Study of the kinetic parameters of thermal and oxidative degradation of various residual materials, Biomass Bioenerg. 124, 13-24.
Branca, C., and Di Blasi, C., 2003. Global kinetics of wood char devolatilization and combustion, Energ. Fuel. 17, 1609-15.
Brittain, H.G., and Bruce, R.D., 2006. Chapter 4: Thermal analysis. Comprehensive analytical chemistry, Elsevier. 47, 63-109.
Brunner, P.H., Monch, H., 1986. The flux of metals through municipal soild waste incineration, Waste Manag. Res. 4, 105-19.
Cabuk, B., Duman, G., Yanik, J., Olgun, H., 2020. Effect of fuel blend composition on hydrogen yield in co-gasification of coal and non-woody biomass. Int. J. Hydrog. Energy 5, 3435-43.
Cai, J., Wang, Y., Zhou, L., Huang, Q., 2008. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere, Fuel Process. Technol. 89, 21-7.
Calvo, L.F., Gil, M.V., Otero, M., Morán, A., García, A. I., 2012. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresour. Technol. 109, 206-14.
Chan, F.L., and Tanksale, A., 2014. Review of recent developments in Ni-based catalysts for biomass gasification. Renew. Sust. Energ. Rev. 38, 428-38.
Chanaka Udayanga, W.D., Veksha, A., Giannis, A., Lisak, G., Chang, V.W.C., Lim, T.T., 2018. Fate and distribution of heavy metals during thermal processing of sewage sludge. Fuel 226, 721-44.
Chang, S.S., Lee, W.J., Holsen, T.M., Li, H.W., Wang, L.C., Chang-Chien, G.P., 2014. Emissions of polychlorinated-p-dibenzo dioxin, dibenzofurans (PCDD/Fs) and polybrominated diphenyl ethers (PBDEs) from rice straw biomass burning. Atmos. Environ. 94, 573-81.
Chen, G., Li, J., Liu, C., Yan, B., Cheng, Z., Ma, W., Yao, J., Zhang, H., 2019. Low-temperature catalytic cracking of biomass gasification tar over Ni/HZSM-5. Waste biomass valori. 10, 1013-20.
Chen, H., Chen, X., Qin, Y., Wei, J., Liu, H., 2017. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity, Bioresour. Technol. 228, 241-9.
Chen, W., Annamalai, K., Sun, J.F., Chen, Y.M., 2016. Chemical kinetics of bean straw biofuel pyrolysis using maximum volatile release method. Korean J. Chem. Eng. 33, 2330-6.
Chiang, K.Y., Chien, K.L., Lu, C.H., 2012. Hydrogen energy production from disposable chopsticks by a low temperature catalytic gasification. Int. J. Hydrog. Energy. 37, 15672-80.
Chiang, K.Y., Liao, C.K., Lu, C.H., 2016. The effects of prepared iron-based catalyst on the energy yield in gasification of rice straw. Int. J. Hydrog. Energy 41, 21747-54
Chiang, K.Y., Liao, C.K., Lu. C.H., 2016. The effects of prepared iron-based catalyst on the energy yield in gasification of rice straw. Int. J. Hydrog. Energy. 41, 21747-54.
Chiang, K.Y., Lin, M.H., Lu, C.H., Chien, K.L., Lin, Y.H., 2015. Improving the synthesis gas quality in catalytic gasification of rice straw by an integrated hot gas cleaning system. Int. J. Green Energy. 12, 1005-11.
Chiang, K.Y., Lin, Y.X., Lu, C.H., Chien, K.L., Lin, M.H., Wu, C.C., Ton, S.S., Chen, J.L., 2013a. Gasification of rice straw in an updraft gasifier using water purification sludge containing Fe/Mn as a catalyst, Int. J. Hydrog. Energy. 38, 12318-24.
Chiang, K.Y., Lu, C.H., Lin, M.H., Chien, K.L., 2013b. Reducing tar yield in gasification of paper-reject sludge by using a hot gas cleaning system. Energy. 50, 47-53.
Chin, B.L.F., Gorin, A., Chua, H. B., Twaiq, F., 2015. Experimental investigation on tar produced from palm shells derived syngas using zeolite HZSM-5 catalyst. J. Energy Inst. 89, 713-24.
Choi, Y.K., Cho, M.H., Kim, J.S., 2015. Steam/oxygen gasification of dried sewage sludge in a two-stage gasifier: Effects of the steam to fuel ratio and ash of the activated carbon on the production of hydrogen and tar removal, Energy. 91, 160-7.
Choi, Y.K., Cho, M.H., Kim, J.S., 2016. Air gasification of dried sewage sludge in a two-stage gasifier. Part 4: Application of additives including Ni-impregnated activated carbon for the production of a tar-free and H2-rich producer gas with a low NH3 content. Int. J. Hydrogen Energ. 41, 1460-7.
Choi, Y.K., Ko, J.H., Kim, J.S., 2017. A new type three-stage gasification of dried sewage sludge: Effects of equivalence ratio, weight ratio of activated carbon to feed, and feed rate on gas composition and tar, NH3, and H2S removal and results of approximately 5 h gasification. Energy 118, 139-46.
Chong, C.C., Setiabudi, H.D., Jalil, A.A., 2020. Dendritic fibrous SBA-15 supported nickel (Ni/DFSBA-15): A sustainable catalyst for hydrogen production. Int. J. Hydrogen Energ. 45, 18533-48.
Chyang, C.S., Han, Y.L., Zhong, Z.C., 2009. Study of HCl absorption by CaO at high temperature. Energy Fuel 23, 3948-53.
Cimino, S., Lisi, L., Erto, A., Deorsola, F.A., de Falco, G., Montagnaro, F., Balsamo, M., Cimino, S., 2020. Role of H2O and O2 during the reactive adsorption of H2S on CuO-ZnO/activated carbon at low temperature. Micropor. Mesopor. Mat. 295, 109949.
Clarke, L.B., 1993. The fate of trace elements during coal combustion and gasification: an overview, Fuel 72, 731-6.
Council of Agriculture, Executive Yuan R.O.C. http://eng.coa.gov.tw (access date: 13 December 2016).
Cui, H., Turn, S.Q., Keffer, V., Evans, D., Tran, T., Foley, M., 2013. Study on the fate of metal elements from biomass in a bench-scale fluidized bed gasifier, Fuel 108, 1-12.
Dabai, F., Paterson, N., Millan, M., Fennell, P., Kandiyoti, R., 2014. Tar formation and destruction in a fixed bed reactor simulating downdraft gasification: Effect of reaction conditions on tar cracking products. Energ. Fuel 28, 1970-82.
De Andrés, J.M., Narros, A., Rodríguez, M.E., 2011. Behavior of dolomite, olivine and alumina as primary catalysts in air–steam gasification of sewage sludge. Fuel 90, 521-27.
De Caprariis, B., Scarsella, M., Petrullo, A., De Filippis, P., 2015. Olive oil residue gasification and syngas integrated clean up system. Fuel 158, 705-10.
De Oliveira, L.H., Meneguin, J.G., Pereira, M.V., da Silva, E.A., Grava, W.M., do Nascimento, J.F., Arroyo, P.A., 2019. H2S adsorption on NaY zeolite. Micropor. Mesopor. Mat. 284, 247-57.
Deshmane, V.G., Abrokwah, R.Y., Kuila, D., 2015. Synthesis of stable Cu-MCM-41 nanocatalysts for H2 production with high selectivity via steam reforming of methanol. Inter. J. Hydrogen Energ. 40, 10439-52.
Di Giulio, N., Bosio, B., Cigolotti, V., Nam, S. W., 2012. Experimental and theoretical analysis of H2S effects on MCFCs. Int. J. Hydrog. Energy 37, 19329-36.
Diep, N.Q., Sakanishi, K., Nakagoshi, N., Fujimoto, S., Minowa, T., 2015. Potential for rice straw ethanol production in the Mekong Delta, Vietnam. Renew. Energy 74, 456-63.
Dingemans, G., Van Helvoirt, C.A.A., Pierreux, D., Keuning, W., Kesselsa, W.M.M., 2012. Plasma-assisted ALD for the conformal deposition of SiO2: Process, material and electronic properties. J. Electrochem. Soc. 159, 277-85.
Dong, J., Chi, Y., Tang, Y., Ni, M., Nzihou, A., Weiss-Hortala, E., Huang, Q., 2015. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration, Energ. Fuel 29, 7516-7525.
Dong, L., Asadullah, M., Zhang, S., Wang, X.S., Wu, H., Li, C.Z., 2013. An advanced biomass gasification technology with integrated catalytic hot gas cleaning: Part I. Technology and initial experimental results in a lab-scale facility. Fuel 108, 409-16.
Dong, L., Chunfei, W., Ling, H., Shi, J., Williams, P.T., Huang, J., 2017. Promoting hydrogen production and minimizing catalyst deactivation from the pyrolysis-catalytic steam reforming of biomass on Nano sized NiZnAlOx catalysts. Fuel 188, 610-20.
D′Orazio, A., Rapagnà, S., Foscolo, P.U., Gallucci, K., Nacken, M., Heidenreich, S., Di Carlo, A., Dell′Era, A., 2015. Gas conditioning in H2 rich syngas production by biomass steam gasification: Experimental comparison between three innovative ceramic filter candles. ‎Int. J. Hydrog. Energy 40, 7282-90.
Dou, B., Gao, J., Baek, S.W., Sha, X., 2003. High-temperature HCl removal with sorbents in a fixed-bed reactor. Energy Fuel 17, 874-8.
Dou, B., Wang, K., Jiang, B., Song, Y., Zhang, C., Chen, H., 2016. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic. Int. J. Hydrog. Energy 4, 3803-10.
Dou, B.L., Gao, J.S., Sha, X.Z., 2001. A study on the reaction kinetics of HCl removal from high-temperature coal gas. Fuel Process. Technol. 72, 23-33.
Duan, L., Cui, J., Jiang, Y., Zhao, C., Anthony, E.J., 2017. Partitioning behavior of Arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal, Fuel Process. Technol. 166, 107-14.
Dündar-Tekkaya, E. and Yürüm, Y., 2016. Mesoporous MCM-41 material for hydrogen storage: A short review. Int. J. Hydrog Energy 41, 9789-95.
El-Sayed, S.A., and Mostafa, M.E., 2015. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques, Waste Biomass Valori. 6, 401-15.
El-Sayed, Y., and Bandosz, T.J., 2004. Adsorption of valeric acid from aqueous solution onto activated carbons: role of surface basic sites. J. Colloid Interface Sci. 273, 64-72.
Fang, H., Huang, L., Wang, J., He, G., Reible, D., 2016. Environmental assessment of heavy metal transport and transformation in the Hangzhou Bay, China, J. Hazard. Mater. 302, 447-57.
Fang, S.W., Yu, Z.S., Lin, Y., Lin, Y.S., Fan, Y.L., Liao, Y.F., Ma, X.Q., 2017. A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives, Appl. Therm. Eng. 111, 292-300.
Feng, W., Kwon, S., Borguet, E., Vidic, R., 2005. Adsorption of hydrogen sulfide onto activated carbon fibers: Effect of pore structure and surface chemistry. Environ. Sci. Technol. 39, 9744-9.
Fennell, P.S., Pacciani, R., Tennis, J.D., Davidson, J.F., Hayhurst, A.N., 2017. The effects of repeated cycles of calcination and carbonation on a variety of different limestones, as measured in a hot fluidized bed of sand. Energ. Fuel. 21, 2072-81.
Ferreira-Pinto, L., Silvarizi, M.P., Carvalho de Araújo, P.C., Zanette, A.F., Cardozo-Filho, L., 2019. Experimental basic factors in the production of H2 via supercritical water gasification. Int. J. Hydrog. Energy 44, 25365-83.
Fuente-Cuesta, A., Lopez-Anton, M.A., Diaz-Somoano, M., Zomeren, A.V., Cieplik, M., Martínez-Tarazona, M.R., 2013. The influence of temperature and steam on the yields of tar and light hydrocarbon compounds during devolatilization of dried sewage sludge in a fluidized bed, Fuel 108, 341-50.
Gai, C., Guo, Y.C., Liu, T.T., Peng, N.N., Liu, Z.G., 2016. Hydrogen-rich gas production by steam gasification of hydrochar derived from sewage sludge. Int. J. Hydrog. Energy 41, 3363-72
Gallucci, K., Stendardo, S., Foscolo, P.U., 2008. CO2 capture by means of dolomite in hydrogen production from syngas. ‎Int. J. Hydrog. Energy 33, 3049-55.
Gao, J., Zhao, Y., Sun, S., Che, H., Zhao, G., Wu, J., 2016. Experiments and numerical simulation of sawdust gasification in an air cyclone gasifier. Chem. Eng. J. 213, 97-103.
Gao, N., Li, A., Quan, C., Qu, Y., Mao, L., 2012. Characteristics of hydrogen-rich gas production of biomass gasification with porous ceramic reforming. Int. J. Hydrog. Energy. 37, 9610-8.
García, G., Monzón, A., Bimbela, F., Sánchez, J.L., Ábrego, J., 2013. Desulfurization and catalytic gas cleaning in fluidized-bed co-gasification of sewage sludge-coal blends. Energ. Fuel 27, 2846-56.
Geng, Q., Wang, L.J., Yang, C., Zhang, H.Y., Zhao, Y.R., Fan, H.L., Huo, C., 2019. Room-temperature hydrogen sulfide removal with zinc oxide nanoparticle/molecular sieve prepared by melt infiltration. Fuel Process. Technol. 26-37.
Giuffrida, A., Romano, M.C., Lozza, G., 2013. Efficiency enhancement in IGCC power plants with air-blown gasification and hot gas clean-up. Energy 53, 221-9.
Greenwood, N.N., Earnshaw, A., 1997. Chemistry of the Elements, second ed. School of Chemistry University of Leeds, UK.
Guan, G., Kaewpanha, M., Hao, X., Abudula, A., 2016. Catalytic steam reforming of biomass tar: Prospects and challenges. Renew. Sust. Energ. Rev. 58, 450-61.
Guo, F., Zhong, Z., Xue, H., 2018. Partition of Zn, Cd, and Pb during co-combustion of sedum plumbizincicola and sewage sludge, Chemosphere. 197, 50-6.
Guo, L.F., Pan, K.L., Lee, H.M., Chang, M.B., 2015. High-temperature gaseous H2S removal by Zn–Mn-based sorbent. Ind. Eng. Chem. Res. 54, 11040-47.
Hagen J. 2006. Industrial Catalysis: A practical approach, the second edition. Chapter 2, 177-82
Hlina, M., Hrabovsky, M., Kavka, T., Konrad, M., 2014. Production of high quality syngas from argon/water plasma gasification of biomass and waste, Waste Manage. 34, 63-6.
Hong, Y.S., Sin, K.R., Pak, J.S., Kim, C.J., Liu, B.S., 2017. Kinetic analysis of H2S removal over mesoporous Cu-Mn mixed oxide/SBA-15 and La-Mn mixed oxide/KIT-6 sorbents during hot coal gas desulfurization using the deactivation kinetics model. Energy fuels 31, 9874-80.
HSC - Chemistry chemical reaction and equilibrium software version 5.1, UK, http://www.chemistry-software.com/general/13094.htm, 2018 (access date: 24 February 2018).
Hu, M., Gao, L., Chen, Z., Ma, C., Zhou, Y., Ma, S., Laghari, M., Xiao, B., Zhang, B., Guo, D., 2016. 2016. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust. Energy Convers. Manag. 111, 409-416.
Hu, M., Laghari, M., Cui, B., Xiao, B., Zhang, B., Guo, D., 2018. Catalytic cracking of biomass tar over char supported nickel catalyst. Energy 145, 228-37.
Huang, H.J., and Yuan, X.Z., 2016. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge, Bioresour. Technol. 200, 991-8.
Huggins, F., and Goodarzi, F., 2009. Environmental assessment of elements and polyaromatic hydrocarbons emitted from a Canadian coal-fired power plant, Int. J. Coal Geol. 77, 282-8.
In, J.B., Cho, K.R., Tran, T.X., Kim, S.M., Wang, Y., Grigoropoulos, C.P., Noy, A., Fornasiero, F., 2018. Effect of enhanced thermal stability of alumina support layer on growth of vertically aligned single-walled carbon nanotubes and their application in nano filtration membranes. Nanoscale Res. Lett. 13, 173.
International Rice Research Institute, irri.org/rice-today/rice-today-Asia (access date: 13 December 2016)
Jayaraman, K., Kok, M.V., Gokalp, I., 2017. Pyrolysis, combustion and gasification studies of different sized coal particles using TGA-MS, Appl. Therm. Eng. 125, 1446-55.
Jiang, L., Hu, S., Wang, Y., Su, S., Sun, L., Xu, B., 2015. Catalytic effects of inherent alkali and alkaline earth metallic species on steam gasification of biomass. Int. J. Hydrog. Energy. 40, 15460-69
Jin, F., Sun, H., Wu, C., Ling, H., Jiang, Y., Williams, P.T., Huang, J., 2018. Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass. Catal. Today 309, 2-10.
Jin, K., Ji, D.X., Xie, Q.L., Nie, Y., Yu, F.W., Ji, J.B., 2019. Hydrogen production from steam gasification of tableted biomass in molten eutectic carbonates. Int. J. Hydrog. Energy 44, 22919-25.
Jingde, L., Rundong, L., Zhihui, Z., Yanlong, L., Yun, Z., 2013. Influence of chlorine, sulfur and phosphorus on the volatilization behavior of heavy metals during sewage sludge thermal treatment, Waste Manag. Res. 31, 1012-18.
Johansen, F.M., Jakobsen, J.G., Frandsen, F.J., Glarborg, P., 2011. Release of K, Cl, and S during pyrolysis and combustion of high-chlorine biomass, Energ. Fuel. 25, 4961-71.
Judex, J.W., Gaiffi, M., Burgbacher, H.C., 2012. Gasification of dried sewage sludge: Status of the demonstration and the pilot plant, Waste Manage. 32, 719-23.
Karnjanakom, S., Guan, G.P., Asep, B.Y., Du, X., Hao, X.G., Samart, C., Abudula, A., 2015. Catalytic steam reforming of tar derived from steam gasification of sunflower stalk over ethylene glycol assisting prepared Ni/MCM-41. Energy Convers. Manag. 98, 359-68.
Kim, K.D., Jeon, S.M., Hasolli, N., Lee, K., Lee, J.R., Han, J.W., Kim, H.T., Park, Y.O., 2018. HCl removal characteristics of calcium hydroxide at the dry-type sorbent reaction accelerator using municipal waste incinerator flue gas at a real site. Korean J. Chem. Eng. 34, 747-56.
Knudsen, J.N., Jensen, P.A., Lin, W., Frandsen, F.J., Dam J.K., 2004. Sulfur transformations during thermal conversion of herbaceous biomass. Energ. Fuel. 18, 810-9.
Korzun, E.A., Heck, H.H., 1990. Sources and fates of lead and cadmium in municipal solid waste, J. Air Waste Manag. Assoc. 40, 1220-6.
Krerkkaiwan, S., Tsutsumi, A., Kuchonthara, P., 2013. Biomass derived tar decomposition over coal char bed. Science Asia. 39, 511-9.
Krishnamoorthy, V., Pisupati, S.V., 2016. Fate of sulfur during entrained-flow gasification of pittsburgh no. 8 coal: Influence of particle size, sulfur forms, and temperature. Energ. Fuel. 30, 3241-50.
Kuramochi, H., Wu, W., Kawamoto, K., 2005. Prediction of the behaviors of H2S and HCl during gasification of selected residual biomass fuels by equilibrium calculation, Fuel. 84, 377-87.
Kurian, V., Gupta, R., 2016. Distribution of vanadium, nickel, and other trace metals in soot and char from asphaltene pyrolysis and gasification, Energ. Fuel. 30, 1605-15.
Kurkela, E., Kurkela, M., Hiltunen, I., 2016. Steam–oxygen gasification of forest residues and bark followed by hot gas filtration and catalytic reforming of tars: Results of an extended time test. Fuel Process. Technol. 141, 148-58.
Laprune, D., Farrusseng, D., Schuurman, Y., Meunier, F.C., Pieterse, J.A.Z., Steele, A.M., Thorpe, S., 2018. Effects of H2S and phenanthrene on the activity of Ni and Rh-based catalysts for the reforming of a simulated biomass-derived producer gas. Appl. Catal. B. 221, 206-14.
Lee, C.H., Truc, T.T.T., Lee, B.K., Mitoma, Y., Mallampati, S.R., 2015. Evaluation of heavy metals in hazardous automobile shredder residue thermal residue and immobilization with novel nano-size calcium dispersed reagent, J. Hazard. Mater. 296, 239-47.
Lee, T., Zubir, Z.A., Jamil, F.M., Matsumoto, A., Yeoh, F.Y., 2014. Combustion and pyrolysis of activated carbon fibre from oil palm empty fruit bunch fibre assisted through chemical activation with acid treatment, J. Anal. Appl. Pyrol. 110, 408-18.
Li, B., Yang, H., Wei, L., Shao, J., Wang, X., Chen, H., 2017. Absorption-enhanced steam gasification of biomass for hydrogen production: Effects of calcium-based absorbents and NiO-based catalysts on corn stalk pyrolysis-gasification. Int. J. Hydrogen Energ. 42, 5840-48.
Li, L., Xu, Z.R, Zhang, C.L., Bao, J.P., Dai, X.X., 2012. Quantitative evaluation of heavy metals in solid residues from sub- and super-critical water gasification of sewage sludge, Bioresour. Technol. 121, 69-75.
Li, Q., Meng, A., Jia, J., Zhang, Y., 2010. Investigation of heavy metal partitioning influenced by flue gas moisture and chlorine content during waste incineration, J. Environ. Sci-China. 22, 760-8.
Li, Y., Lin, Y., Xu, Z., Wang, B., Zhu, T.L, 2019. Oxidation mechanisms of H2S by oxygen and oxygen-containing functional groups on activated carbon. Fuel Process. Technol. 189, 110-9.
Lian, Y., Wang, H., Fang, W., Yang, Y., 2010. Water gas shift activity of Co-Mo/MgO-Al2O3 catalysts presulfided with ammonium sulfide. J. Nat. Gas. Chem. 9, 61-6.
Lin, G.M., and Chyang, C.S., 2017, Removal of HCl in flue gases by calcined limestone at high temperatures. Energy Fuel 31, 12417-24.
Lind, F., Seemann, M., Thunman, H., 2011. Continuous catalytic tar reforming of biomass derived raw gas with simultaneous catalyst regeneration. Ind. Eng. Chem. Res. 50, 11553-62.
Liu, L., Liu, Y., Song, J., Ahmad, S., Liang, J., Sun, Y., 2019. Plasma-enhanced steam reforming of different model tar compounds over Ni-based fusion catalysts. J. Hazard. Mater. 377, 24-33.
Lopes, T., Paganin, V.A., Gonzalez, E.R., 2011. The effects of hydrogen sulfide on the polymer electrolyte membrane fuel cell anode catalyst: H2S–Pt/C interaction products. J. Power Sources 196, 6256-63.
Ma, Z.Q., Chen, D.Y., Gu, J., Bao, B.F., Zhang, Q.S., 2015. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods, Energy Convers. Manag. 89, 251-9.
Mancinelli, E., Baltrėnaitė, E., Baltrėnas, P., Paliulis, D., Passerini, G., 2016. Trace metals in biochars from biodegradable by-products of industrial processes, Water Air Soil Pollut. 227, 1-21.
Mansaray K.G., and Ghaly, A.E., 1999. Determination of reaction kinetics of rice husks in air using thermogravimetric analysis, Energ. Source. 21, 899-911.
Marani, D., Braguglia, C.M., Mininni, G., Maccioni, F., 2003. Behaviour of Cd, Cr, Mn, Ni, Pb, and Zn in sewage sludge incineration by fluidised bed furnace, Waste Manage. 23, 117-24.
Martinez, A., Gerdes, K., Gemmen, R., Poston, J., 2010. Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas. J. of Power Sources, 195, 5206-12.
Matsuzaki, Y., Yasuda, I., 2000. The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ion. 132, 261-9.
Meij, R., 1994. Trace element behavior in coal-fired power plants, Fuel Process Technol. 39, 199-217.
Mendiburu, A.Z., Carvalho, J.A., Coronado, C.J.A., 2014. Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models, Energy. 66, 189-201.
Menezes, R.L.C.B., Moura, K.O., de Lucena, S.M.P., Azevedo, D.C.S., Bastos-Neto, M., 2018. Insights on the mechanisms of H2S retention at low concentration on impregnated carbons. Ind. Eng. Chem. Res. 57, 2248-57.
Meng, X., de Jong, W., Pal, R., Verkooijen, A.H.M., 2010. In bed and downstream hot gas desulphurization during solid fuel gasification: A review. Fuel Process. Technol. 91, 964-81.
Micoli, L., Bagnasco, G., Turco, M., 2013. HCl removal from biogas for feeding MCFCs: Adsorption on microporous materials. Int. J. Hydrog. Energy 38, 447-52.
Moon, J., Jo, W., Jeong, S., Bang, B., Choi, Y., Hwang, J., Lee, U., 2017. Gas cleaning with molten tin for hydrogen sulfide and tar in producer gas generated from biomass gasification. Energy. 130, 318-26.
Mopoung, S., Moonsri, P., Palas, W., Khumpai, S., 2015. Characterization and properties of activated carbon prepared from tamarind seeds by KOH activation for Fe(III) adsorption from aqueous solution, Sci. World J. 415961, 9 pages.
Morselli, L., Zappoli, S., Militerno, S., 1993. The presence and distribution of heavy metals in municipal solid waste incinerators, Toxicol. Environ. Chem. 37, 139-45.
Mun, T.Y., Kim, J.W., Kim, J.S., 2013. Air gasification of dried sewage sludge in a two-stage gasifier: Part 1. The effects and reusability of additives on the removal of tar and hydrogen production. Int. J. Hydrog. Energy. 38, 5226-34.
Murakami, K., Kasai, K., Kato, T., Sugawara, K., 2012a. Conversion of rice straw into valuable products by hydrothermal treatment and steam gasification. Fuel. 93, 37-43.
Murakami, K., M. Sato, T. Kato and K. Sugawara., 2012b. Influence of difference in chemical compositions of rice straw on hydrogen formation in nickel-catalyzed steam gasification. Fuel Process. Technol. 95, 78-83.
Murakami. T., Yasuda, H., Norisada, K., 2018. Comparison of tar components in syngas generated by gasification conditions of lignite in a fluidized bed gasifier, Energ. Fuel. 32, 1110-14.
Nam, H., Wang, Z., Shanmugam, S.R., Adhikari, S., Abdoulmoumine, N., 2018. Chemical looping dry reforming of benzene as a gasification tar model compound with Ni- and Fe-based oxygen carriers in a fluidized bed reactor. Int. J. Hydrogen Energ. 43, 18790-800.
Ngoc Lan Thao, N.T. and Chiang, K.Y., 2020. The migration, transformation and control of trace metals during the gasification of rice straw, Chemosphere 260, 127540.
Ngoc Lan Thao, N.T., Chiang, Liu, C.F., K.Y., Wan, H.P., Hung, W.C., 2019. Enhanced trace pollutants removal efficiency and hydrogen production in rice straw gasification using hot gas cleaning system, Int. J. Hydrog. Energy. 44, 3363-72.
Ngoc Lan Thao, N.T., Chiang, Liu, C.F., K.Y., Wan, H.P., Hung, W.C., 2020. Hydrogen production enhancement using hot gas cleaning system combined with prepared Ni-based catalyst in biomass gasification.
Nguyen, H.N.T., Seemann, M., Thunman, H., 2018. Fate of polycyclic aromatic hydrocarbons during tertiary tar formation in steam gasification of biomass, Energ. Fuel. 32, 3499-509.
Nzihou, A. and Stanmore, B., 2013. The fate of heavy metals during combustion and gasification of contaminated biomass-A brief review, J. Hazard. Mater. 256-257, 56-66.
Ohtsuka, Y., Tsubouchi, N., Kikuchi, T., Hashimoto, H., 2009. Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas. Powder Technol. 190, 340-47.
Osman, A.I., Abu-Dahrieh, J.K., Rooney, D.W., Halawy, S.A., Mohamed, M.A., Abdelkader, A., 2012, Effect of precursor on the performance of alumina for the dehydration of methanol to dimethyl ether. Appl. Catal B-Environ. 127, 307-15.
Oudghiri, F., García-Morales, J.L., Rodríguez-Barroso, M.R., 2016. Novel use of TGA–FTIR technique to predict the pollution degree in marine sediments, Int. J. Hydrog. Energy. 41, 8154-58.
Ozekmekci, M., Salkic, G., Fellah, M.F., 2015. Use of zeolites for the removal of H2S: A mini-review. Fuel Process Technol.139, 49-60.
Parihar, A.K.S., Hammer, T., Sridhar. G., 2015. Development and testing of tube type wet ESP for the removal of particulate matter and tar from producer gas. Renew. Energy. 74, 875-83.
Park, J., Lee,Y., Ryu, C., Park, Y.K., 2014. Slow pyrolysis of rice straw: Analysis of products properties, carbon and energy yields. Bioresour. Technol. 155, 63-70.
Parshetti, G.K., Quek, A., Betha, R., Balasubramanian, R., 2014. TGA–FTIR investigation of co-combustion characteristics of blends of hydrothermally carbonized oil palm biomass (EFB) and coal, Fuel Process. Technol. 118, 228-34.
Pavageau, M.P., Morin, A., Séby, F., Guimon, C., Krupp, E., Pécheyran, C., Poulleau, J., Donard, O.F.X., 2004. Partitioning of metal species during an enriched fuel combustion experiment: Speciation in the gaseous and particulate phases, Environ. Sci. Technol. 38, 2252-63.
Phuphuakrat, T., Namioka, T., Yoshikawa, K., 2010. Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption. Appl. Energy. 87, 2203-11.
Piatkowski, N., and Steinfeld, A., 2010. Reaction kinetics of the combined pyrolysis and steam-gasification of carbonaceous waste materials, Fuel. 89, 1133-40.
Pinto, F., André, R., Miranda, M., Neves, D., Varela, F., Santos, J., 2016. Effect of gasification agent on co-gasification of rice production wastes mixtures. Fuel. 180, 407-16.
Poskrobko, S., Król, D., Łach, J., 2012. Hydrogen chloride bonding with calcium hydroxide in combustion and two-stage combustion of fuels from waste. Energ. Fuel 26, 842-53.
Prabhansu., Karmakar, M.K., Chandra, P., Chatterjee, P.K., 2015. A review on the fuel gas cleaning technologies in gasification process. J. Environ. Chem. Eng. 3, 689-702.
Pudasainee, D., Paur, H.R., Fleck, S., Seifert, H., 2014. Trace metals emission in syngas from biomass gasification, Fuel Process. Technol. 120, 54-60.
Raheem, A., Dupont, V., Channa, A.O., Zhao, X., Vuppaladadiyam, A.K., Taufiq-Yap, Y.H., Zhao, M., Harun, R., 2017. Parametric characterization of air gasification of chlorella vulgaris biomass, Energ. Fuel. 31, 2959-69.
Rakesh, N., Dasappa, S., 2018. A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies, Renew. Sust. Energ. Rev. 91, 1045-64.
Ramachandran, S., Ha, J.H., Kim, D.K., 2007. Hydrogen storage characteristics of metal oxide doped Al–MCM-41 mesoporous materials. Catal. Commun 8, 1934-8.
Rapagnà, S., Gallucci, K., Di Marcello, M., Matt, M., Nacken, M., Heidenreich, S., Foscolo, P.U., 2010. Gas cleaning, gas conditioning and tar abatement by means of a catalytic filter candle in a biomass fluidized-bed gasifier. Bioresour. Technol. 101, 7123-30.
Reed, G.P., Dugwell, D.R., Kandiyoti, R., 2001. Control of trace elements in a gasifier hot gas filter:  A comparison with predictions from a thermodynamic equilibrium model. Energ. Fuel. 15, 1480-7.
Reyes-Labarta J.A., and Marcilla, A., 2008. Kinetic study of the decompositions involved in the thermal degradation of commercial azodicarbonamide, J. Appl. Polym. Sci. 107, 339-46.
Rondón ,W., Freire, D., Benzo, Z., Sifontes, A., González, Y., Valero, M., Brito, J., 2013. Application of 3A zeolite prepared from venezuelan kaolin for removal of Pb (II) from wastewater and its determination by flame atomic absorption spectrometry, Am. J. Analyt. Chem. 4, 584-93.
Rong, L., Maneerung, T., Ng, J.C., Neoh, K.G., Bay, B.H., Tong, Y.W., Dai, Y., Wang, C.H., 2015. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: Toxicity assessment of solid residues, Waste Manage. 36, 241-55.
Sağ, Y., Akçael, B., Kutsal, T., 2002. Ternary biosorption equilibria of chromium(VI), copper(II), and cadmium(II) on Rhizopus arrhizus, Sep. Sci. Technol. 37, 279-309.
Said, M., Cassayre, L., Dirion, J.L., Nzihou, A., Joulia, X., 2015. Behavior of heavy metals during gasification of phytoextraction plants: Thermochemical modelling, Comput. Aided Chem. Eng. 37, 341-6.
Salema, A.A., Afzal, M.T., Motasemi, F., 2014. Is there synergy between carbonaceous material and biomass during conventional pyrolysis? A TG-FTIR approach, J. Anal. Appl. Pyrol. 105, 217-26.
Schmid, M., Beirow, M., Schweitzer, D., Waizmann, G., Spörl, R., Scheffknecht, G., 2018. Product gas composition for steam-oxygen fluidized bed gasification of dried sewage sludge, straw pellets and wood pellets and the influence of limestone as bed material, Biomass Bioenergy. 117, 71-7.
Seville, J., 1993. Rigid Ceramic Filters for Hot Gas Cleaning. KONA Powder Part. J. 11, 41-56.
Shabbar, S., and Janajreh, I., 2013. Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method, Energy Convers. Manag. 65, 755-63.
Shah, M., Bordoloi, A., Nayak, A.K., Mondal, P., 2019. Effect of Ti/Al ratio on the performance of Ni/TiO2 -Al2O3 catalyst for methane reforming with CO2. Fuel Process Technol. 192, 21-35.
Shahabuddin, M., Alam, M.T., Krishna, B.B., Bhaskar, T., Perkins, G., 2020. A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 312, 123596.
Shang, G., Shen, G., Liu, L., Chen, Q., Xu, Z., 2013. Kinetics and mechanisms of hydrogen sulfide adsorption by biochars. Bioresour. Technol. 133, 495-9.
Shao, J.G., Yan, R., Chen, H.P., Wang, B.W., Lee, D.H., Liang, D.T., 2008. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry fourier transform infrared analysis, Energ. Fuel. 22, 38-45.
Sharma, R., Segato, T., Delplancke, M.P., Terryn, H., Baron, G.V., Denayer, J.F.M., Cousin-Saint-Remi, J., 2020. Hydrogen chloride removal from hydrogen gas by adsorption on hydrated ion-exchanged zeolites. Chem. Eng. J. 381, 122512.
Shen, Y., Wang, J., Ge, X., Chen, M., 2016. By-products recycling for syngas cleanup in biomass pyrolysis - An overview. Renew. Sust. Energ. Rev. 59, 1246-68.
Shen, Y., Yoshikawa, K., 2013. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis-a review. Renew. Sust. Energ. Rev. 21, 371-92.
Shen, Y., Zhao, P., Shao, Q., Ma, D., Takahashi, F., Yoshikawa, K., 2014. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification, Appl. Catal. B. 152–153, 140-51.
Shi, X., Zhang, K., Cheng, Q., Song, G., Fan, G., Li, J., 2018. Promoting hydrogen-rich syngas production through catalytic cracking of rape straw using Ni-Fe/PAC-/γAl2O3 catalyst. Renew. Energy 140, 32-8.
Siefert, N.S., Shekhawat, D., Litster, S., Berry, D.A., 2013. Steam–coal gasification using CaO and KOH for in situ carbon and sulfur capture. Energ. Fuel 27, 4278-89.
Sigot, L., Ducom, G., Germain, P., 2016. Adsorption of hydrogen sulfide (H2S) on zeolite (Z): Retention mechanism. Chem. Eng. J. 287, 47-53.
Simell, P., Kurkela, E., Ståhlberg, P., Hepola, J., 1996. Catalytic hot gas cleaning of gasification gas. Catal. Today 27, 55-62.
Simell, P.A., Hepola, J.O., Krause, A.O.I., 1997. Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts. Fuel 76, 1117-7.
Singh, S., Wu, C.F., Williams, P.T., 2012. Pyrolysis of waste materials using TGA-MS and TGA-FTIR as complementary characterization techniques, J. Anal. Appl. Pyrol. 107, 94-99.
Sricharoenchaikul, V., Atong, D., Sornkade, P., Nisamaneenate, J., 2017. Performance of Ni/dolomite pellet catalyst on gas distribution from cassava rhizome gasification with a modular fixed-bed gasifier. Environ. Technol. 38, 1176-83.
Srivastava, V.C., Mall, I.D., Mishra, I.M., 2008. Antagonistic competitive equilibrium modeling for the adsorption of ternary metal ion mixtures from aqueous solution onto bagasse fly ash, Ind. Eng. Chem. Res. 47, 3129-37.
Stephen, J.L., and Periyasamy, B., 2018. Innovative developments in biofuels production from organic waste materials: A review, Fuel. 214, 623-33.
Striūgas, N., Skvorčinskienė, R., Paulauskas, R., Zakarauskas, K., Vorotinskienė, L., 2017. Evaluation of straw with absorbed glycerol thermal degradation during pyrolysis and combustion by TG-FTIR and TG-GC/MS, Fuel. 204, 227-235.
Subramanyam, V., Gorodetsky, A., 2017. Chapter 5 - Municipal wastes and other potential fuels for use in IGCC systems, in integrated gasification combined cycle (IGCC) technologies. Woodhead Publishing. 181-219.
Sukitprapanon, T., Suddhiprakarn, A., Kheoruenromne, I., Gilkes, R.J., 2018. Partitioning and potential mobilization of aluminum, arsenic, iron, and heavy metals in tropical active and post-active acid sulfate soils: Influence of long-term paddy rice cultivation, Chemosphere. 197, 691-702.
Sun, T., Shen, Y., Jia, J., 2014. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer. Environ. Sci. Technol. 48, 2263-72.
Sun, Y. and Han, S., 2015. Diffusion of N2, O2, H2S and SO2 in MFI and 4A zeolites by molecular dynamics simulations. Mol. Simulat. 41, 1095-109.
Šyc, M., Pohořelý, M., Jeremiáš, M., Vosecký, M., Kameníková, P., Skoblia, S., Svoboda, K., Punčochář, M., 2011. Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass, Energ. Fuel. 25, 2284-91.
Taiwan Council of Agricultural, Executive Yuan, http://www.coa.gov.tw (access date: 13 December 2016)
Tan, R.S., Tuan, A., Tuan, A., Mahmud, S.A., Md, Z.R., Md, I.K., 2019. Catalytic steam reforming of complex gasified biomass tar model toward hydrogen over dolomite promoted nickel catalysts. Int. J. Hydrogen Energ. 44, 21303-14.
Tao, K., Ohta, N., Liu, G., Yoneyama, Y., Wang, T., Tsubaki, N., 2013. Plasma enhanced catalytic reforming of biomass tar model compound to syngas. Fuel. 104, 53-57.
Taufiq-Yap, Y.H., and Yap, D.K.Y., 2016. Catalytic flash gasification of EFB for hydrogen production using zeolite supported metal oxide catalysts. Key Eng. Mater. 707, 166-74.
Theofanidis, S.A, Galvita, V.V., Poelman, H., Batchu, R., Buelens, L.C, Detavernier, C., Marin, G.B., 2018. Mechanism of carbon deposits removal from supported Ni catalysts. Appl. Catal. B-Environ. 239, 502-12.
Vähä-Savo, N., DeMartini, N., Hupa, M., 2013. Fate of char nitrogen in catalytic gasification - Formation of alkali cyanate, Energ. Fuel. 27, 7108-14.
Valmet, Finland, biomass gasification, www.valmet.com (access date: 13 December 2016)
Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P., 2008. The distribution of heavy metals during fluidized bed combustion of sludge (FBSC), J. Hazard. Mater. 151, 96-102.
Vasile C., and Brebu, M.A., 2007. Thermal valorization of biomass and of synthetic polymer waste. Upgrading of pyrolysis oils, Cell Chem. Technol. 40, 489-512.
Veksha, A., Giannis, A., Oh, W.D., Chang, V.W.C., Lisak, G., Lim, T.T., 2018. Catalytic activities and resistance to HCl poisoning of Ni-based catalysts during steam reforming of naphthalene. Appl Catal A: Gen. 557, 25-38.
Viinikainen, T., Kauppi, I., Korhonen, S., Lefferts, L., Kanervo, J., Lehtonen, J., 2018. Molecular level insights to the interaction of toluene with ZrO2-based biomass gasification gas clean-up catalysts. Appl. Catal. B-Environ. 142–143, 769-79.
Vogg, H., Braun, H., Metzger, M., Schneider, J., 1986. The specific role of cadmium and mercury in municipal solid waste incineration, Waste Manag. Res. 4, 65-74.
Wang, G., Xu, S., Wang, C., Zhang, J., Fang, Z., 2017. Desulfurization and tar reforming of biogenous syngas over Ni/olivine in a decoupled dual loop gasifier. Int. J. Hydrogen Energ. 42, 15471-8.
Wang, J., Zhang, J., Zhong, H., Wang, H., Ma, K., Pan, L., 2020a. Effect of support morphology and size of nickel metal ions on hydrogen production from methane steam reforming. Chem. Phys. Lett. 746, 137-291.
Wang, K.S., Chiang, K.Y., Tsai, C.C., Sun, C.J., Tsai, C.C., Lin, K., 2001. The effects of FeCl3 on the distribution of the heavy metals Cd, Cu, Cr, and Zn in a simulated multimetal incineration system. Environ. Int. 26, 257-263.
Wang, S., Nam, H., Nam, H., 2020b. Preparation of activated carbon from peanut shell with KOH activation and its application for H2S adsorption in confined space. J. Environ. Chem. Eng. 8, 103683.
Wang, S., Wang, Q., Hu, Y.M., Xu, S.N., He, Z.X., Ji, H.S., 2015c. Study on the synergistic co-pyrolysis behaviors of mixed rice husk and two types of seaweed by a combined TG-FTIR technique, J. Anal. Appl. Pyrol. 114, 109-18.
Wang, W., Padban, N., Ye, Z., Olofsson, G., Andersson, A., Bjerle, I., 2000. Catalytic hot gas cleaning of fuel gas from an air-blown pressurized fluidized-bed gasifier. Ind. Eng. Chem. Res. 39, 4075-81.
Wang, Y., Pang. S., 2018. The effects of temperature and gas species on ammonia removal in the simulated producer gas of biomass gasification by H2-reduced titanomagnetite. Energ. Fuel 32, 5134-44.
Wang, Y.G, Sun, J.L, Zhang, H.Y., Chen, Z.D., Lin, X.C., Zhang, S., Gong, W.B., Fan, M.H., 2015d. In situ catalyzing gas conversion using char as a catalyst/support during brown coal gasification. Energ. Fuel. 29, 1590-96.
Wei, J., Guo, Q., Chen, H., Chen, X., Yu, G., 2016. Study on reactivity characteristics and synergy behaviours of rice straw and bituminous coal co-gasification, Bioresour. Technol. 220, 509-15.
Wei, J.T., Gong, Y., Guo, Q.H., Ding, L., Wang, F.C., Yu, G.S., 2017. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity. Bioresour. Technol. 227, 345-52.
Wei, M., and Wang, D., 2020. A novel utilized method of tar derived from biomass gasification for fabricating binder-free all-solid-state hybrid supercapacitors. Int. J. Hydrogen Energ. 45, 4793-803.
Wen, W.Y., and Cain, E., 1984. Catalytic pyrolysis of a coal tar in a fixed-bed reactor. Ind. Eng. Chem. Process Des. Dev. 23, 627-37.
Woolcock, P.J., Brown R.C., 2013. A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg. 52: 54-84.
Wu, C.F., Dupont, V., Nahil, M.A., Dou, B., Chen, H.S., Williams, P.T., 2017. Investigation of Ni/SiO2 catalysts prepared at different conditions for hydrogen production from ethanol steam reforming. J. Energy Inst. 90, 276-84.
Wu, C.F., Wang, L.Z., Williams, P.T., Shi, J., Huang, J., 2011. Hydrogen production from biomass gasification with Ni/MCM-41 catalysts: Influence of Ni content. Appl. Catal. B-Environ 108-109, 6-13.
Wu, H., La, P.V., Pantaleo, G., Puleo, F.P., Venezia, A.M., Liotta, L.F., 2013. Ni-based catalysts for low temperature methane steam reforming: Recent results on Ni-Au and comparison with other bi-metallic systems. Catalyst 3, 563-83.
Wu, M.H., Lin, C.L., Zeng, W.Y., 2008. Effects of gasification temperature and catalyst ratio on hydrogen production from catalytic steam pyrolysis-gasification of polypropylene, Energ. Fuel. 22, 4125-32.
Wu, Z., Li, Y., Zhang, B., Yang, W., Yang, B., 2019. Co-pyrolysis behavior of microalgae biomass and low-rank coal: Kinetic analysis of the main volatile products, ‎Bioresour. Technol. 271, 202-9.
Wu, Z.S., Mi, T., We, Q.X., Chen, Y.F., Li, X.H., 2010. The thermal cracking experiment research of tar from rice hull gasification for power generation, in proceedings of the 20th International conference on fluidized bed combustion, G. Yue, et al., Editors. Springer Berlin Heidelberg: Berlin, Heidelberg, 642-7.
Xie, L.F., Duan, P.G., Jiao, J.L., Xu, Y.P., 2019. Hydrothermal gasification of microalgae over nickel catalysts for production of hydrogen-rich fuel gas: Effect of zeolite supports. Int. J. Hydrog. Energy 44, 5114-24.
Xie, X., Li, Y.J., Liu, C.T., Wang, W.J., 2015. HCl absorption by CaO/Ca3Al2O6 sorbent from CO2 capture cycles using calcium looping. Fuel Process. Technol. 138, 500-8.
Xu, C.F., Hu, S., Xiang, J., Zhang, L.Q., Sun, L.S., Shuai, C., Chen, Q.D., He, L.M., Edreis, E.M.A., 2014. Interaction and kinetic analysis for coal and biomass co-gasification by TG–FTIR, ‎Bioresour. Technol. 154, 313-21.
Xue, G., Kwapinska, M., Horvat, A., Li, Z.L., Dooley, S., Kwapinski, W., 2014. Gasification of miscanthus x giganteus in an air-blown bubbling fluidized bed: a preliminary study of performance and agglomeration. Energ. Fuel. 28, 1121-31
Yan, F., Luo, S.Y., Hu, Z.Q., Xiao, B., Cheng, G., 2010. Hydrogen-rich gas production by steam gasification of char from biomass fast pyrolysis in a fixed-bed reactor: influence of temperature and steam on hydrogen yield and syngas composition. Bioresour. Technol. 101, 5633-7.
Yang, C., Florent, M., de Falco, G., Fan, H., Bandosz, T.J. 2020. ZnFe2O4/activated carbon as a regenerable adsorbent for catalytic removal of H2S from air at room temperature. Chem. Eng. J. 394, 124906.
Yang, K., Su, B., Shi, L., Wang, H., Cui, Q., 2018. Adsorption mechanism and regeneration performance of 13X for H2S and SO2. Energy Fuels 32, 12742-12749.
Yang, X., Liu, X., Guo, T., Liu, C., 2019. Effects of Cu and Fe additives on low-temperature catalytic steam reforming of toluene over Ni/AC catalysts. Catal. Surv. from Asia 23, 54-63.
Yao, D.D., Yang, K.P., Chen, H.P., Williams, P.T., 2018. Investigation of nickel-impregnated zeolite catalysts for hydrogen/syngas production from the catalytic reforming of waste polyethylene. Appl. Catal. B-Environ. 227, 477-87.
Ye, M.J., Tao, Y.W., Jin, F.Z., Ling, H.J., Wu, C.F., Williams, P.T., Huang, J., 2018. Enhancing hydrogen production from the pyrolysis-gasification of biomass by size-confined Ni catalysts on acidic MCM-41 supports. Catalysis Today 307, 154-61.
Yoshiie, R., Taya, Y., Ichiyanagi, T., Ueki, Y., Naruse, I., 2013. Emissions of particles and trace elements from coal gasification, Fuel 8, 67-72.
Yu, J., Sun, L., Xiang, J., Hu, S., Su, S., Qiu, J., 2012. Vaporization of heavy metals during thermal treatment of model solid waste in a fluidized bed incinerator, Chemosphere. 86, 1122-1126.
Yung, M.M., and Kuhn, J.N., 2010. Deactivation mechanisms of Ni-based tar reforming catalysts as monitored by X-ray absorption spectroscopy. Langmuir 26, 16589-94.
Zeng, X., Wang, F., Wang, Y.G., Li, A.M., Yu, J., Xu, G.W., 2014. Characterization of char gasification in a micro fluidized bed reaction analyzer, Energ Fuel. 28, 1838-45.
Zha, J., Huang, Y., Xia, W., 2018. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration, Fuel. 229, 241-7.
Zhang, S., Zhu, S., Zhang, H., Liu, X., Xiong, Y., 2019. High quality H2-rich syngas production from pyrolysis-gasification of biomass and plastic wastes by Ni–Fe@Nanofibers/Porous carbon catalyst. ‎Int. J. Hydrog. Energy 44, 26193-203.
Zhang, S.Q., Yue, X.M., Yin, Z.Y., Pan, T.T., Dong, M.J., Sun, T.Y., 2009. Study of the co-pyrolysis behavior of sewage-sludge/rice-straw and the kinetics, Procedia Earth Planet Sc. 1, 661-6.
Zhang, X., Lei, H., Zhu, L., Zhu, X., Qian, M., Yadavalli, G., Wu, J., Chen, S., 2016. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics, ‎Bioresour. Technol. 220, 233-8.
Zhao, H., Song, Q., Yao, Y., 2016. HCl capture by rice straw char and its influence on the transformation of alkali and alkaline earth metallic species during pyrolysis. Energ. Fuels. 30, 5854-61.
Zhao, H.B., Song, Q., Wu, X.Y., Yao, Q., 2018. Transformation of alkali and alkaline earth metallic species during pyrolysis and CO2 gasification of rice straw char, J. Fuel Chem. Technol. 46, 27-33.
Zhao, P., Chen, H., Ge, S., Yoshikawa, K., 2013. Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion. Appl. Energy. 11, 199-205.
Zhong, D.X., Zhong, Z.P., Wu, L.H., Song, Z.W., Luo, Y.M., 2015. Thermal characteristics and fate of heavy metals during thermal treatment of sedum plumbizincicola, a zinc and cadmium hyperaccumulator, Fuel Process. Technol. 131, 125-32.
Zhou, L., Zhang, G., Reinmöller, M., Meyer, B., 2019. Effect of inherent mineral matter on the co-pyrolysis of highly reactive brown coal and wheat straw, Fuel. 239, 1194-203.
Zhu, H.M., Jiang, X.G., Yan, J.H., Chi, Y., Cen, K.F., 2008. TG-FTIR analysis of PVC thermal degradation and HCl removal. J. Anal. Appl. Pyrolysis 82, 1-9.
Zhu, H.M., Jiang, X.G., Yan, J.H., Chi, Y., Cen, K.F., 2008. TG-FTIR analysis of PVC thermal degradation and HCl removal. J Anal Appl Pyrolysis 82, 1-9.
指導教授 江康鈺(Chiang Kung-Yuh) 審核日期 2020-11-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明