博碩士論文 104327021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.117.111.1
姓名 陳智怡(Jr-Yi Chen)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 應用投射疊紋技術於齒輪精度量測
(Gear Measurement by Projection Moire Technology)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計
★ 具線性齒頂修整之螺旋齒輪接觸特性研究★ 反射鏡減重與撓性支撐結構最佳化
★ 曲面反射鏡減重與背向支撐撓性機構最佳化★ 建構拉焊機感測系統之人機介面與機器學習
★ 考量成像品質之最佳化塑膠透鏡結構設計★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化
★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究★ ZK型雙包絡蝸桿蝸輪組接觸分析
★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發★ 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發
★ 整合視覺及力量控制之六軸機械手臂系統開發★ 平板式太陽能菲涅爾集光透鏡與二次光學元件之設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來齒輪檢測發展趨勢走向非接觸式量測,有別於傳統齒輪檢測所使用的接觸式探針量測,非接觸式量測具有高效率、不受限於探針尺寸或齒輪材質等優勢,因此本研究建立一套非接觸式之光學量測方法應用於齒輪檢測,利用鹵素光源經自準直儀投射平行光束,穿透兩道線性光柵產生疊紋條紋後投射於待測齒面上,並透過影像擷取系統分析疊紋條紋影像以及計算齒輪各項誤差。
本研究中首先將校正片置於待測位置,接著利用CCD感測器拍攝校正片進行影像畸變校正以確保光學量測結果不因鏡頭失真之影響而降低量測精度。完成影像畸變校正後,將待測位置上的校正片更換為齒輪,擷取投射於待測齒面上之疊紋條紋影像,疊紋因齒面之曲率變化產生變形,並藉由相移技術計算齒面上各量測點之相位變化,最後經由相位還原技術可得齒輪之三維輪廓。為驗證本研究之系統量測精度,分別利用三次元量測儀所量測之數據及理想齒形數據作為基準值建立一標準曲面,並且將本研究所計算齒面上各量測點之數據與標準曲面進行誤差比對,計算量測點至曲面之正交距離,即可得到齒面拓樸、齒形及導程誤差。由量測齒輪之拓樸誤差結果顯示,可得知本研究之系統量測精度為2.81 μm。
本研究利用疊紋之高靈敏度的特性建立此齒輪檢測系統,藉由CCD感測器擷取疊紋條紋影像,並配合鏡頭畸變校正參數及影像處理,將光學量測點之數據與理想曲面進行比對後繪製誤差結果,其法不僅為高效率非接觸式之齒輪檢測系統,也可藉由調整疊紋條紋之密度及鏡頭以顯微鏡擷取疊紋影像來提高解析度達到高精度目的,若結合工業用之機台便可達到快速檢測齒輪之目的。
摘要(英)
In recent years, non-contact measurement becomes a mainstream technique for gear detection. Different from the traditional contact probe measurement method, non-contact measurement contains some advantages such as high efficiency and without the restriction from probe size or gear material. Therefore, in this study, a non-contact optical measurement method was adopted to gear detection. For the system architecture, a halogen lamp was chosen as the light source and a collimated beam was produced by autocollimator. Further, moiré fringe was built up as the collimated beam going through the two linear grating. Finally, the moiré fringe projected on the tooth surface and the errors of gear would be calculated by the image capture system.
The process of the measurement system includes: (1) Placing the calibration piece at the testing position first. (2) Executing the distortion correction by CCD sensor in case of the image distortion caused by the optical elements. (3) Replacing the calibration piece with the gear after the correction step being completed. (4) Capturing the deformation of the moiré fringe projected on the tooth surface. (5) Calculating the phase change of the measured points by the phase shift technology and finally gather the available gear three-dimensional contour by the phase unwrapped technology. In addition, in order to verify the accuracy of the system, a real tooth profile measured by the coordinate measuring machine (CMM) would define as the reference profile. The tooth topography, tooth profile and lead errors could be obtained by comparing the deviation between measured and referenced data, and calculating the perpendicular distance from measurement point to the surface. The results of the spur gear show that the accuracy of the system developed by this research are 2.81μm.
In this study, the high sensitivity of the moiré fringe was applied for the gear detection. The image was captured by the CCD sensor, and the data of the optical measurement points were compared with the ideal surface with the parameters of lens distortion correction and image processing. The method is not only implemented a high efficiency non-contact gear detection system, but also achieved the goals of high precision and resolution by adjusting the density of the moiré fringe and capturing the superimposed image by microscope. The ultimate goal of rapid detection of gears may be realized by combining the non-contact measuring system with industrial machine in the future.
關鍵字(中) ★ 疊紋條紋
★ 齒輪檢測
★ 相位移技術
★ 相位還原技術
★ 影像處理
★ 拓樸誤差
關鍵字(英) ★ Moiré fringe
★ Gear measurement
★ Phase shift technology
★ Phase unwrapped technology
★ Image processing
★ Error of topography
論文目次
摘要 i
Abstract ii
誌謝 iii
圖目錄 vii
表目錄 xii
符號定義 xiv
第一章、緒論 1
1.1研究背景 1
1.2文獻回顧 2
1.2.1 光學式齒輪檢測方法之文獻回顧 3
1.2.2 疊紋效應之文獻回顧 8
1.3研究動機與目的 13
1.4論文架構 14
第二章、基礎理論 15
2.1 影像擷取系統 15
2.1.1 CCD與CMOS之比較 15
2.1.2 CCD主要結構與原理 17
2.1.3 CCD與鏡頭各部參數定義 18
2.2 疊紋效應 23
2.2.1 疊紋基本原理 23
2.2.2 疊紋旋轉原理 28
2.2.3 疊紋位移原理 29
2.2.4 疊紋縮放原理 30
2.3 相位移分析理論 31
2.3.1 相位移法 31
2.3.2 相位還原技術 33
2.3.3 相位與高度轉換 34
2.4 影像處理(Image Processing) 35
2.4.1 影像二值化(Binary) 35
2.4.2 邊緣檢測(Edge Detection) 37
2.4.3 離散傅立葉轉換(Discrete Fourier Transform, DFT) 41
2.4.4 雜訊濾波(Noise Filter) 42
2.4.5 影像畸變校正(Distortion Correction) 44
2.5 齒輪拓樸誤差 48
第三章、研究內容與方法 49
3.1齒輪量測系統架構 49
3.1.1 實驗設備 49
3.1.2影像畸變校正 (Distortion Correction) 53
3.1.3影像處理流程 (Image Processing) 56
3.1.4相位分析流程 57
3.2系統量測流程 58
3.3計算齒輪誤差方法 60
3.3.1 齒輪誤差檢測 60
3.3.2 量測系統精度驗證 62
第四章、疊紋量測實驗結果分析 67
4.1 塊規量測實驗結果 67
4.2 齒條之誤差檢測結果 69
4.2.1 與三次元量測儀量測結果比對 69
4.2.2 與數學模式推導之理想齒形比對 74
4.3 正齒輪之齒輪誤差檢測結果 79
4.3.1 與三次元量測儀量測結果比對 79
4.3.2 與數學模式推導之理想齒形比對 84
4.4 正齒輪量測結果與討論 89
4.4.1 正齒輪之拓樸誤差量測校正結果探討 89
4.4.2 三次元量測儀量測正齒輪之結果與理想齒形之比對 100
第五章、結論與未來展望 106
5.1 結論 106
5.2 未來展望 108
參考文獻 109
參考文獻
[1] C. A. Sciammarella, “High-accuracy contouring using projection moiré”, Optical Engineering, Vol. 44(9), September, 2005.
[2] S. Fang, “Analysis and Compensation Method for Installation Error in Measuring Gear Tooth Flank with Laser Interferometry”, Optical Engineering, Vol. 53(8), August, 2014.
[3] H. J. Pahk, “Vision based Precision Inspection System for Profile and Performance of Small and Micro Gears Using the Intelligent Image Processing Techniques and Virtual Master Gears”, Proceedings of SPIE, Vol. 4222, 2000.
[4] J. Peters, “Helical Gear Measurement Using Structured Light”, Proceedings of the XVI IMEKO World Congress, Wien, pp.227–230, 2000.
[5] 張軒慈,「應用繞射光學元件之齒輪量測系統開發」,國立中央大學光機電工程研究所碩士論文,民國105年。
[6] 日本Nikon機台HN-C3030之介紹:
http://www.nikon.com/products/industrial-metrology/lineup/3d_metrology/3d-coordinate-metrology/hnc3030/
[7] W. Y. Chang, “Reconstruction of surface profile by using heterodyne moiré method”, Opt. Com. 285(24), pp.5337–5340, 2012.
[8] C. A. Sciammarella, “High Precision Contouring with Moiré and Related Methods: A Review ”, Journal for Experimental Mechanics, 47, Suppl. 2:43-64, 2011.
[9] M. S. Jeong “Color grating projection moiré with time-integral fringe capturing for high-speed 3-D imaging”, Optical Engineering, Vol. 41(8), pp.1912–1917, 2002.
[10] J. Mu, “Error analysis of phase shifting by varying the incident angle of parallel beams in shadow moiré”, Optic-International Journal for Light and Electron Optics, Vol. 124(24), pp.6769–6771, 2013.
[11] W. S. Boyle and G. E. Smith, “Charge-Coupled Devices A new Approach to MIS Device Structures”, IEEE spectrum, No.7, pp.18-27, July, 1971.
[12] Panasonic CCD感測元件介紹:
http://av.jpn.support.panasonic.com/support/dsc/knowhow/knowhow27.html
[13] 陳煜彬,「應用機器視覺之新式晶圓定位方法」,國立中央大學光機電工程研究所碩士論文,民國100年。
[14] 快門速度、ISO感光度及光圈三者關係之曝光鐵三角介紹 :
http://www.learntimelapse.com/time-lapse-exposure-avoiding-flicker-and-dragging-shutter/
[15] H. Talasaki, “Moiré topography”, Applied Optics, Vol. 12(4), pp.845-850, 1973.
[16] K. Creath and J. C. Wyant, “Moiré and Fringe Projection Techniques”, Optical Shop Testing, Second Edition, pp.653-685, 1992.
[17] 陳旭東,「基於Talbot效應之疊紋式角度量測系統開發」,國立中央大學光機電工程研究所碩士論文,民國103年。
[18] P. Hariharan, B.F. Oreb and T. Eiju, “Digital phase-shifting interferometry a simple error-compensating phase calculation algorithm”, Applied Optics, Vol. 26(13), pp.2504-2506, 1987.
[19] R. Cusack, J. M. Huntley and H. T. Goldgrein, “Improved noise immune phase unwrapping algorithm”, Applied Optics, Vol. 34, pp.781-789, 1995.
[20] K. Itoh, “Analysis of the phase unwrapping algorithm”, Applied Optics, Vol. 21(14), pp.3898-3901, 1983.
[21] W. W. Macy, “Two-dimensional fringe-pattern analysis”, Applied Optics, Vol. 22(23), pp.3898-3901, 1983.
[22] R. M. Goldstein, H. A. Zebker and C. L. Werner, “Satellite radar interferometry: Two-dimensional phase unwrapping”, Radio Science, Vol. 23(4), pp.713-720, 1988.

[23] E. P. Goodwin and J. C. Wyant, “Field Guide to Interferometric Optical Testing”, Proceedings of SPIE, 2006.
[24] 李元裕,「投射疊紋掃描量測技術研究」,私立中原大學機械工程研究所碩士論文,民國90年。
[25] Alasdair and McAndrew著,徐曉珮譯,數位影像處理,新加坡商聖智學習亞洲私人有限公司台灣分公司,台北市,2009。
[26] Gonzalez and Woods 著,繆紹綱譯,數位影像處理,三版,台灣培生教育出版股份有限公司,台北市,2009。
[27] 李朱育等編著,光機電產業設備系統設計,五南圖書出版股份有限公司,台北市,2013。
[28] N. Otsu, “A Threshold Selection Method from Gray-Level”, Histogram, IEEE Transaction on Systems, Man, and Cybernetics, Vol.9, No.1, pp.62-66, January, 1979.
[29] 美商國家儀器;機器視覺Guaging應用中的邊緣偵測(Edge Detection)功能。2010年6月7日。
http://www.ni.com/white-paper/4536/zht/
[30] 马艳, “几种边缘检测算子的比较”, Industry and Mine Automation, No.1, pp.54-55, February, 2004.
[31] J. Canny, “Finding Edges and Lines in Images”, Massachusetts Institute of Technology, Tech.Rep.No.720, June, 1983.
[32] D. C. Brown, “Decentering Distortion of Lens”, Photometric Engineering, pp.444-462, 1966.
[33] G. P. Stein, “Lens Distortion Calibration Using Point Correspondences“, IEEE Computer Society Conference on, A.I. Memo No1595, November, 1996.
[34] J. Wang, F. Shi, J. Zhang and Y. Liu, “A New Calibration Model of Camera Lens Distortion”, Pattern Recognition41, pp.607-615, 2008.
[35] G. P. Stein, “Lens Distortion Calibration Using Point Correspondences”, Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition(CVPR’97), pp.602-608, June, 1997.
[36] J. Weng, “Camera Calibration with Distortion Models and Accuracy Evaluation”, IEEE Transactions on pattern analysis and machine intelligence, Vol.14, No.10, pp.965-980, October, 1992.
[37] DIN 3961/ 3962, Tolerances For Cylindrical Gear Teeth-Bases / Tolerances For Cylindrical Gear Teeth-Tolerances For Deviations Of Individual Parameters, 1978.
[38] ANSI/AGMA 2015-1-A01, Accuracy Classification System Tangential Measurements For Cylindrical Gears, 2002.
[39] 蔡佳宏,「五軸CNC成形砂輪磨齒機線上掃描式量測NC路徑規劃與齒輪精度評估之研究」,國立台灣科技大學機械工程學系碩士論文,民國100年。
[40] 石照耀,林虎“齿轮误差多自由度理论”, Journal of Mechanical Engineering, Vol.50, No1, pp.55-60, January, 2014.
[41] F. L. Litvin and A. F. Aznar, “Gear Geometry and Applied Theory”, Cambridge: Cambridge University Press, pp.105-120, 2004.
[42] 林虎, “基于正交距离回归齿面的齿轮誤差評定”, Optics and Precision Engineering, Vol.23, No11, pp.3192-3199, November, 2015.
[43] 小原治敏著,齒輪入門,小原歯車工業株式會社,昭和61年。
[44] S. J. Ahn, W. Rauh and H. S. Cho, “Orthogonal Distance Fitting of Implicit Curves and Surfaces”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No5, pp.620-638, May, 2002.
[45] W. Lotze and F. Haertig, “3D Gear Measurement by CMM”, WIT Transactions on Engineering Sciences, Vol.34, pp.333-344, 2001.
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2017-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明