博碩士論文 104328002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.80.4.147
姓名 余明倫(Ming-Lun Yu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究★ 以OES光譜進行ECR-CVD太陽電池用氫化氧化矽薄膜製成分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究於自製電漿輔助化學氣象沉積系統利用光放射光譜端點檢測以進行異質接面太陽能電池用氫化非晶矽鈍化薄膜之適用製程研究。透過電漿診斷及硬體回饋以即時提供電漿變化趨勢,大幅減少不必要之製程測試實驗,而縮短製程開發成本。
  首先根據本研究薄膜分析結果顯示,在固定製程氣體總流量為70sccm下,量測鈍化矽晶片所得載子lifetime隨功率提高有明顯下降趨勢(由900µs~200µs),而其薄膜微結構因子(R*~0.3)卻無明顯之變化趨勢。但在製程電漿時序光譜發現電漿解離瞬間(暫態)之SiH*強度較穩定狀態(穩態)時高,表示該瞬間之前趨物SiHX濃度較高使得薄膜沉積速度較快;同時暫態電子溫度指標(Hβ/Hα)也高於穩態,代表此時電漿具有較強離子轟擊,而造成矽晶與鈍化薄膜介面產生缺陷使得矽晶鈍化成效下降。而上述之暫態與穩態差異性隨功率上升而增加,且在調變製程氣體總流量為30sccm時也呈現一樣之變化趨勢。因此判定電漿暫態與穩態差異性越大,其薄膜介面受損越嚴重,造成鈍化效果下降。
  由此電漿光放射光譜端點檢測研究成果驗證獲得矽晶表面鈍化明顯受電漿解離瞬間之狀態影響,也提供一電漿製程開發及適用區間的技術及準則。
摘要(英)
In this study, the process of hydrogenated amorphous silicon (a-Si:H) thin films for application in heterojunction with intrinsic layer (HIT) solar cell is prepared by Plasma Enhanced Chemical Vapor Deposition (PECVD). The characterization of plasma process is studied by using Optical emission spectrometer (OES). The passivation quality of a-Si:H thin films was determined by photo-conductance lifetime tester and the microstructure factor of the films was determined by Fourier-Transform Infrared Spectrometer (FTIR).
  The results show that the surface passivation is affected by the state of plasma. According to stability of SiH*, the plasma reaction can be defined as stable state and transient state. The value of SiH* is much higher in the transient state than in the stable state. It means that the SiHX concentration are much higher when the plasma state is in transient state. On the other hand, the ratio of Hβ/Hα can be defined as an electronic temperature (Te). In the transient-state plasma, the electronic temperature is higher and it indicates the ion bombardment get stronger. With the stronger ion bombardment, the damage between the silicon wafer and the passivation layer is greater. 
  Therefore, the change of plasma state can be used to diagnose and monitor the plasma processing condition and use it to receive an immediate process feedback afterwards. We can cut down the unnecessary process step time and reduce the cost of the research.
關鍵字(中) ★ 電漿輔助化學氣相沉積
★ 氫化非晶矽薄膜
關鍵字(英) ★ PECVD
★ OES
★ a-Si:H
論文目次
中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 研究方法及製程技術簡介 4
2-1 電漿簡介 4
2-2 薄膜沉積 6
2-2-1 薄膜沉積原理 6
2-2-2 化學氣相沉積(Chemical vapor deposition, CVD) 8
2-3 氫化非晶矽薄膜沉積過程簡介 10
2-4 太陽能電池之載子生命週期 15
2-5 電漿診斷系統 21
第三章 實驗方法與製程設備簡介 24
3-1 實驗方法 24
3-2 實驗步驟 25
3-2-1 基板清洗 25
3-2-2 沉積氫化非晶矽薄膜 26
3-3 實驗裝置與量測 26
3-3-1 電漿輔助化學氣相沈積系統(PECVD) 26
3-3-2 光電導生命週期量測儀 (Photoconductance lifetime tester) 29
3-3-3 光放射光譜儀OES 31
3-3-4 傅里葉轉換紅外光譜FTIR 34
3-3-5 表面輪廓儀 Surface Profile 36
第四章 實驗結果與討論 37
4-1 製程區間定義 37
4-2 電漿放光光譜分析 40
4-2-1 高總流量電漿反應穩定度差異 40
4-2-2 低總流量電漿反應穩定度差異 52
第五章 總結 65
參考文獻 66
參考文獻

[1] 經濟部能源局能源報導-封面故事五,2014,http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201404&Page=24&keyword=%A5%DB%AAo.
[2] United Nations Climate Change Conference, 2015, http://www.cop21.gouv.fr/.
[3] Annual Energy Outlook, 2015, http://www.eia.gov/todayinenergy/
[4] Swanson, “A vision for crystalline silicon photovoltaics”, Progress in Photovoltaics, Vol. 14, pp. 443-453, 2006.
[5] H. Sakata and M. Tanaka, “Sanyo’s Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business”, IEEE 4th World Conference, 2006.
[6] G. Zambrano, H Risacos, P Prieto, et al., “ Optical emission spectroscopy study of r.f. magnetron sputtering discharge used for multilayers thin film deposition”, Surf Coat Technol., Vol. 172, pp. 144-149, 2003.
[7] M. F. Dong, A Ricard, J. P Dauchot, et al., “Optical diagnostics of d.c. and r.f. argon magnetron discharges”, Surf. Coat. Technol., Vol. 74-75, pp. 479-484, 1995.
[8] M. Quirk and J. Serda, Semiconductor Manufacturing Technology, Ch.11Deposition, 2001.
[9] 莊達人,VLSI 製造技術,高立圖書有限公司,1996。
[10] J. Venables, “Nucleation and Growth of Thin films”, Rep. Prog. Phys., Vol 47, pp. 399, 1984.
[11] A. Matsuda , M. Takai ,T. Nishimoto, et al., “Solar Energy &Solar Cells”, 2003.
[12] A. Matsuda. “Thin-Film Silicon —Growth Process and Solar Cell Application”, J.J.A.P., Vol 43, pp. 7909–7920, 2004.
[13] ]Y. Ruohe, L. Kuixun, et al., “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997
[14] M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J.J.A.P., Vol 62, pp. 2803–2811, 1987.
[15] A. Triska, D. Dennison, and H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 392, 1975.
[16] R. Schropp and M. Zeman, “Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology”, Kluwer Academic, Boston, 1998.
[17] J. Robertson. “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol 266-269, pp. 79–83, 2000.
[18] H. F. Sterling and R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[19] D. Staebler and L. Wronski, Appl. Phys. Lett. Vol. 31, pp. 292-294, 1977.
[20] D. L. Meier, M. R. Page, E. Iwaniczko, Y, Xu, Q. Wang and H. M. Branz, “Determination of Surface Recombination Velocities for Thermal Oxide and Amorphous Silicon on Float Zone Silicon”, 17th NREL Crystalline Silicon Workshop, August, 2007.
[21] 黃惠良,曾百亨,太陽電池,五南出版社,民國97 年12 月。
[22] T. S. Horanyi, T. Pavelka and P. Tutto, “In situ bulk lifetime measurement on silicon with a chemically passivated surface”, Applied Surface Science, Vol. 63, pp. 306-311, 1993.
[23] Y. Yamamoto, et al. “Passivation Effect of Plasma Chemical Vapor Deposited SiNx on Single Crystalline Silicon Thin Film Solar Cells”, Japanese Journal of Applied Physics, Vol. 42, pp. 5135-5139, 2003.
[24] M. Z. Burrows, et al., “Role of hydrogen bonding environment in a-Si:H films for c-Si surface passivation”, Journal of Vacuum Science and Technology A,Vol. 26(4), pp. 683-687, 2008.
[25] J. Sritharathikhun, C. Banerjee, M. Otsubo, T. Sugiura, H. Yamamoto, T. Sato, A. Limmanee, A. Yamada and M. Konagai, “Surface Passivation of Crystalline and Polycrystalline Silicon Using Hydrogenated Amorphous Silicon Oxide Film”, Japanese Journal of Applied Physics, Vol. 46(6A), pp. 3296-3300, 2007.
[26] I. Chambouleyron, A. Lloret, P. Roca I Cabarrocas, G. Sardin and J. Andreu, “Hydrogen content, transport properties and light degradation of a-Si:H films containing artificially generated interfaces”, Sol. Energy Mater., Vol 17, pp. 1-16, 1998.
[27] W. Guo, L. Zhang, F. Meng, J. Bao, D. Wang, J. Lin, Z. Feng, P. J. Verlinden and Z. Liu, “Study of correlation between hydrogenated amorphous silicon microstructure and crystalline silicon surface passivation in heterojunction solar cells”, Phys. Status. Solidi A, Vol. 212, pp. 2233-2238, 2015.
[28] Y. Fukuda, et al. “Optical emission spectroscopy study toward high rate growth of microcrystalline silicon”, Thin Solid Films, Vol. 386, pp. 256-260, 2001.
[29] K. Saito and M. Kondo, “Investigation of crystalline orientation factor in microcrystalline silicon thin film deposition”, Phys. Status Solidi A, Vol 207, No. 3, pp. 535–538, 2010.
[30] P. Kumar, F. Zhu and A. Madan, “Electrical and structural properties of nano-crystalline silicon intrinsic layers for nano-crystalline silicon solar cells prepared by very high frequency plasma chemical vapor deposition”, International Journal of Hydrogen Energy, Vol 33, pp. 3938–3944, 2008.
[31] K. R. Sanjay, L. Kroely, S. Kasouit, P. Bulkin, and P. Roca , “Plasma emission diagnostics during fast deposition of microcrystalline silicon thin films in matrix distributed electron cyclotron resonance plasma CVD system”, Phys. Status Solidi©, Vol 7, pp. 553–556, 2010.
[32] S. Y. Lien et al., “Characterization of HF-PECVD a-Si:H thin film solar cells by using OES studies”, Journal of Non-Crystalline Solids, Vol 357, pp.161–164, 2011.
[33] A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, “Control of plasma chemistry for preparing highly stabilized amorphous silicon at high growth rate”, Solar Energy Materials and Solar Cells, Vol 78, pp. 3–26, 2003.
[34] 陳建勳,非晶矽繞射光學元件的製作與分析,p.10,國立中央大學物理研究所碩士論文,民國九十四年。
[35] P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. Jauberteau, J. Desmaison, and C. Dong et al., “Microwave Plasma Enhanced CVD of Aluminum Oxide Films:OES Diagnostics and Influence of the RF Bias”, Thin Solid Films, Vol. 390, pp. 51–58, 2001.
[36] P. K. Chang, P. T. Hsieh, F. J. Tsai, C. H. Lu, C.H. Yeh, N. F. Wang, M. P. Houng , “ High efficiency amorphous silicon solar cells with high absorption coefficient intrinsic amorphous silicon layers”, Thin Solid Films, Vol. 520 , pp. 5042–5045, 2012
[37] R.W.B. Pearse and A. G. Gaydon, The identification of molecular spectra 4th ed., Chapman & Hall, London, 1976
[38] R.D. Robertson, H. Hils, H. Catham, and A. Gallagher, “Laser plasma coupling in long pulse, long scale length plasma”, Appl. Phys. Lett. Vol 43, pp. 54-56, 1983.
[39] S. Matsuo and M. Kiuchi, “Low Temperature Chemical Vaper Deposition Method Utilizing an Electron Cyclotron Resonance Plasma”, Jpn. J. Appl. Phys. Vol 22, pp. 210-212, 1983.
[40] Y. Ueda, Y. Inoue, S. Shinohara, Y. Kawai, ”Deposition of large area amorphous silicon films by ECR plasma CVD”, Vacuum, Vol 48, pp 119-122, 1997.
[41] H.L. Hsiao, H.L. Hwang, A.B. Yang, L.W. Chen, T.R. Yew, ”Study on low temperature faceting growth of polycrystalline silicon thin films by ECR downstream plasma CVD with different hydrogen dilution”, Appl. Surf. Sci, Vol 142, pp. 316-321, 1999.
[42] S. Kageyama, M. Akagawa, H. Fujiwara, “Ellipsomrtry characterization of a-Si:H layers for thin-film solar cells”, J. Non-Cryst. Solids. Vol 358, pp. 2257-2259, 2012.
[43] A. Madan, Optoelectronic Properties of Amorphous Silicon Using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) Technique, in: G. Bruno, P. Capezzuto and A. Madan (Eds.), Plasma Deposition of Amorphous Silicon-Based Materials, Academic Press, San Diego, pp. 243-382, 1995.
[44] T. Nishimoto, M. Takai, H. Miyahara, M. Kondo, A. Matsuda, “Amorphous silicon solar cells deposited at high growth rate”, J. Non-Cryst. Solids, Vol 299, pp. 1116-1122, 2002.
[45] S. Guha, J. Yang, Scott J. Jones, Y. Chan and D.L. Williamson, “Effect of microvoids on initial and light‐degraded efficiencies of hydrogenated amorphous silicon alloy solar cells”, Appl. Phys. Lett., Vol 61, pp. 1444, 1992.
[46] H. M. Mott-Smith and I. Lacoste, “The Theory of Collectors in Gaseous Discharges”, Physical, Vol. 28, pp. 727-763, 1926.
[47] L. Latrasse, N. Sadeghi, A. Lacoste, A. Bes and J. Pelletier, “Characterization of high density matrix microwave argon plasmas by laser absorption and electric probe diagnostics”, J. Phys. D: Appl. Phys., Vol. 40, pp. 5177-5186, 2007.
[48] Q. Wang, D. Ba, J. Feng, “Diagnosis of the Argon Plasma in a PECVD Coating Machine”, Plasma Sci. Technol, Vol. 10, pp. 727, 2008.
[49] R. K. Janev and D. Reiter, “Collision processes of Hydride species in Hydrogen plasmas: III. The Silane family”, Contrib. Plasma Phys., Vol. 43, pp. 401-417, 2003.
[50] 彭永福,以溶膠凝膠法製備SiO2薄膜作TFT閘極絕緣層材料,2009年。
[51] P. Horvath, “Mass spectroscopic and optical studies of radiofrequency SiH4 and H2-SiH4 plasma”, Roland Eotvos University, PhD, 2007.

[52] 周聖凱,「利用電漿診斷系統輔助本質氫化非晶矽薄膜於粗糙化矽晶基板之鈍化品質研究」,國立中央大學,機械工程學系研究所碩士論文,民國105年。
[53] P. K. Chang, P. T. Hsieh, F. J. Tsai, C. H. Lu, C.H. Yeh, N. F. Wang, M. P. Houng ,” High efficiency amorphous silicon solar cells with high absorption coefficient intrinsic amorphous silicon layers”, Thin Solid Films, Vol. 520 , pp. 5042–5045, 2012
[54] H. Meddeb, T. Bearda, Y. Abdulraheem, W. Dimassi, H. Ezzaouia, I. Gordon, J. Szlufcik, J. Poortmans, “In-situ optical emission spectroscopy diagnostic of plasma ignition impact on crystalline-silicon passivation by a-Si:H films”, Superlattices Microstruct., Vol. 96, pp. 235-258, 2016.
指導教授 利定東 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明