博碩士論文 104328006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:35.172.236.135
姓名 梁宏閔(Hung-Min Liang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 快速退火影響石墨烯晶粒尺寸之研究
(Research of Graphene Grain Size by Rapid Thermal Annealing)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 石墨烯與超導金屬介面的電子穿隧行為★ 石墨烯透明導電膜與其成長模型之研究
★ 電漿輔助石墨烯直接成長在Pt上成長機制★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究
★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究★ 電漿輔助低溫化學氣相沉積法直接成長石墨烯/金屬複合透明導電薄膜
★ 快速退火生長高品質石墨烯★ 改善石墨烯轉印品質之研究
★ 暗場顯微鏡系統監控石墨烯成長之研究★ 以射頻磁控濺鍍鍍製多層有機矽阻障層研究
★ 真空聚合物薄膜在三維曲面研究★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率
★ 化學氣相沉積石墨烯透明導電膜之製程與分析★ 超薄類鑽碳膜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 石墨烯(graphene)具有高導電性、高光穿透率還具有高機械強度
等優異的物理特性。現在製作石墨烯的方法有很多種類,其中以高溫
的化學氣相沉積法最能生產出高品質石墨烯。
本研究主要利用(rapid thermal process, RTP),將石墨烯整體製程
時間從數小時縮短至 1 小時內,使用銅箔作為基板,透過快速退火觀
察在銅箔上石墨烯晶粒尺寸的變化。其中影響石墨烯晶粒大小的參數
為: 溫度的高低,其最佳製程溫度為 1070℃;銅箔平整度,藉由化學
電拋光來改變銅箔粗糙度,獲得最佳粗糙度的電壓值為 8.8V,其獲
得最佳粗糙度為 0.406nm;氫氣/甲烷濃度的比例從 50 提高到 55 也
能改變石墨烯晶粒的大小。使用 OM(optical microscope)來初步觀測石
墨烯生長狀況,進一步使用 SEM(scanning electron microscope)觀察成
長趨勢,石墨烯顆粒尺寸從最初生長的 4.295μm成長到本研究最大的
尺寸 29.3μm,最大尺寸石墨烯 29.3μm製程參數為: 拋光電壓值為
8.8V、製程溫度 1070℃、氫氣/甲烷比為 55。
摘要(英) Graphene has many unique properties including high conductivity, transmittance and strength characteristics. There are many different processes to produce graphene. Chemical vapor deposition (CVD) is the best method among those processes to produce the high-quality graphene, however, the production of CVD wastes a lot of time. In this study, the graphene film is synthesized by rapid thermal process system in 40 minutes, compared to conventional CVD, it saves much time. Copper foil is the substrate in the high temperature (1070 oC) used for annealing. Temperatures, roughness of copper, the ratio of hydrogen/methane are the parameters affected graphene grain size. The best temperature to grow large grain graphene is 1070℃. Atomic force microscope reveals the reducing roughness (0.406nm) by chemical mechanical polishing(8.8V). The ratio of hydrogen/methane is also important to grow the grain size of graphene, the ratio of hydrogen/methane from 50 to 55 can increase the size of grain. optical microscope is adopted to know the appearance of the grain of graphene, then scanning electron microscope is used to observe the grain size of graphene. The results indicated that the increment of grain size from 4.295μm to 29.3μm (The temperature is 1070℃, 8.8V for chemical mechanical polishing, the ratio of hydrogen/methane is 55.) which is the biggest size in this study.
關鍵字(中) ★ 石墨烯
★ 化學氣相沉積法
★ 粗糙度
★ 晶粒尺寸
關鍵字(英)
論文目次 摘要 ......................................... I
Abstract .................................... II
致謝 ........................................III
目錄 ........................................ IV
圖目錄 ....................................... I
表目錄 ....................................... I
第一章 緒論................................... 1
1-1 前言 ..................................... 1
1-2 研究動機 ................................. 2
1-3 論文架構 ................................ 2
第二章 基礎理論與文獻回顧 ..................... 4
2-1 石墨烯 ................................... 4
2-2 透明導電膜 ............................... 7
2-3 石墨烯作為透明導電膜 ....................... 9
2-4 石墨烯製備方法 ..............................11
2-4-1 機械剝離法 ................................11
2-4-2 碳化矽磊晶法 ..............................12
2-4-3 氧化石墨烯還原法 ...........................13
2-4-4 化學氣相沉積法 ...........................14
2-4-5 快速升溫製程石墨烯 ........................18
2-6 控制石墨烯之單晶 ..........................19
第三章 實驗方法與儀器介紹 .....................23
3-1 石墨烯之製程 ............................23
3-1-1 化學氣相沉積法儀器介紹 ..................24
3-1-2 成長石墨烯 ............................25
3-1-3 石墨盒 ...............................26
3-2 分析儀器 ................................27
3-2-1 原子力顯微鏡 ..........................27
3-2-2 光學顯微鏡 ...........................28
3-2-3 掃描式電子顯微鏡 ......................28
第四章 結果與討論 ............................30
4-1 改變溫度影響石墨烯尺寸 ....................30
4-2 銅箔表面粗糙度對石墨烯晶粒尺寸之影響 ........32
4-2-2 拋光電壓值與銅箔表面粗糙度關係 ..........35
4-2-3 拋光退火與石墨盒的關係 ................36
4-2-4 拋光電壓值石墨烯顆粒大小的關係 .........38
4-3 氫氣/甲烷比影響石墨烯尺寸 ...............39
第五章 結論與未來工作 ......................41
參考文獻 ..................................43
參考文獻 [1] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
[2] 林永昌, 呂俊頡, 鄭碩方, & 邱博文. (2011). 石墨烯之電子能帶
特性與其元件應用. 物理雙月刊 , 33(2), 191-202.
[3] Geim, A. K., & Novoselov, K. S. (2007). The rise of graphene. Nature materials, 6(3), 183-191.
[4] Bunch, J. S. (2008). Mechanical and electrical properties of graphene sheets. Ithaca, NY: Cornell University.
[5] Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., ... & Geim, A. K. (2008). Fine structure constant defines visual transparency of graphene. Science, 320(5881), 1308-1308. [6] Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., ... & Stormer, H. L. (2008). Ultrahigh electron mobility in suspended graphene. Solid State Communications, 146(9), 351-355.
[7] Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25(6), 2558-2561. [8] Jo, G., Choe, M., Lee, S., Park, W., Kahng, Y. H., & Lee, T. (2012). The application of graphene as electrodes in electrical and optical devices. Nanotechnology, 23(11), 112001
[9] Bostwick, A., McChesney, J., Ohta, T., Rotenberg, E., Seyller, T., & Horn, K. (2009). Experimental studies of the electronic structure of graphene. Progress in Surface Science, 84(11), 380-413.
[10] Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109.
[11] Geim, A. K. (2009). Graphene: status and prospects. science, 324(5934), 1530-1534.
[12] Pollard, B. (2011). Growing graphene via chemical vapor deposition. Pomona College, Claremont.
[13] A. Teng, (2010) Physical properties of carbon nanotubes.
[14] Reich, S., Maultzsch, J., Thomsen, C., & Ordejon, P. (2002). Tight-binding description of graphene. Physical Review B, 66(3), 035412.
[15] Bonaccorso, F., Sun, Z., Hasan, T., & Ferrari, A. C. (2010). Graphene photonics and optoelectronics. Nature photonics, 4(9), 611-622.
[16] Andrei, E. Y., Li, G., & Du, X. (2012). Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Reports on Progress in Physics, 75(5), 056501.
[17] 楊明輝. (2012). 透明導電膜. 藝軒圖書出版社.
[18] 楊明輝. (2001). 金屬氧化物透明導電材料的基本原理. 藝軒圖書
出版社.
[19] L.G.D. Arco, C. Zhou, Y. Zhang, C.W. Schlenker, K. Ryu, M.E. Thompson. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics, ACS Nano, 2865–2873.
[20] Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., ... & Ruoff, R. S. (2009). Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters, 9(12), 4359-4363. [21] Bi, H., Huang, F., Liang, J., Xie, X., & Jiang, M. (2011). Transparent conductive graphene films synthesized by ambient pressure chemical vapor deposition used as the front electrode of CdTe solar cells. Advanced materials, 23(28), 3202-3206.
[22] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., ... & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. science, 306(5696), 666-669.
[23] Zhang, Y., Small, J. P., Pontius, W. V., & Kim, P. (2005). Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Applied Physics Letters, 86(7), 073104.
[24] De Heer, W. A., Berger, C., Wu, X., First, P. N., Conrad, E. H., Li, X., ... & Potemski, M. (2007). Epitaxial graphene. Solid State Communications, 143(1), 92-100.
[25] Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., & Dai, H. (2008). Highly conducting graphene sheets and Langmuir–Blodgett films. Nature nanotechnology, 3(9), 538-542.
[26] Eda, G., Fanchini, G., & Chhowalla, M. (2008). Large-area ultrathin electronic material. Nature nanotechnology, 3(5), 270-274.
[27] Mehdipour, H., & Ostrikov, K. (2012). Kinetics of low-pressure, low-temperature graphene growth: toward single-layer, single-crystalline structure. ACS nano, 6(11), 10276-10286.
[28] Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., ... & Banerjee, S. K. (2009). Large-area synthesis of high-quality and uniform graphene films on copper foils. Science, 324(5932), 1312-1314.
[29] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J. S., Zheng, Y., ... & Kim, Y. J. (2010). Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology, 5(8), 574-578.
[30] Li, X., Magnuson, C. W., Venugopal, A., An, J., Suk, J. W., Han, B., ... & Fu, L. (2010). Graphene films with large domain size by a two-step chemical vapor deposition process. Nano letters, 10(11), 4328-4334.
[31] An, J., Voelkl, E., Suk, J. W., Li, X., Magnuson, C. W., Fu, L., ... & Ruoff, R. S. (2011). Domain (grain) boundaries and evidence of “twinlike” structures in chemically vapor deposited grown graphene. ACS nano, 5(4), 2433-2439.
[32] Kim, K., Lee, Z., Regan, W., Kisielowski, C., Crommie, M. F., & Zettl, A. (2011). Grain boundary mapping in polycrystalline graphene. ACS nano, 5(3), 2142-2146.
[33] Jauregui, L. A., Cao, H., Wu, W., Yu, Q., & Chen, Y. P. (2011). Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Communications, 151(16), 1100-1104.
[34] Yu, Q., Jauregui, L. A., Wu, W., Colby, R., Tian, J., Su, Z., ... & Chung, T. F. (2011). Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature materials, 10(6), 443-449.
[35] Fan, L., Li, Z., Li, X., Wang, K., Zhong, M., Wei, J., ... & Zhu, H. (2011). Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition. Nanoscale, 3(12), 4946-4950.
[36] Wu, W., Yu, Q., Peng, P., Liu, Z., Bao, J., & Pei, S. S. (2011). Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Nanotechnology, 23(3), 035603.
[37] Orofeo, C. M., Hibino, H., Kawahara, K., Ogawa, Y., Tsuji, M., Ikeda, K. I., ... & Ago, H. (2012). Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon, 50(6), 2189-2196.
[38] Han, G. H., Gunes, F., Bae, J. J., Kim, E. S., Chae, S. J., Shin, H. J., ... & Lee, Y. H. (2011). Influence of copper morphology in forming nucleation seeds for graphene growth. Nano letters, 11(10), 4144-4148.
[39] Wang, C., Chen, W., Han, C., Wang, G., Tang, B., Tang, C., ... & Qin, S. (2014). Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Scientific reports, 4.
[40] Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov, S. (2011). Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano, 5(7), 6069-6076.
指導教授 郭倩丞 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明