博碩士論文 104328008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.139.82.23
姓名 鄒昀辰(Yun-Chen Tsou)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 水平式MOCVD腔體中使用氣體脈衝方法生長氮化鋁薄膜之數值模擬與分析
(Numerical analysis for pulsed injection metal organic chemical vapor deposition method to growth AlN film in horizontal reactor)
相關論文
★ 發光二極體電極設計與電流分佈模擬分析★ 外加水平式磁場柴氏長晶法生長矽單晶之熱流場數值模擬研究
★ 外加cusp磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ MOCVD垂直式腔體中氮化鎵薄膜生長之模擬分析
★ 考量氣體分子 吸附性質之 MOCVD垂直反應腔體模擬分析★ Phosphor Packaging Design of white LED with Optical-Thermal-Electrical Coupling
★ 外加Cusp磁場下柴氏法生長單晶矽之不同晶堝轉影響熱流場及氧傳輸數值分析★ 水解二乙基鋅於近耦合噴淋式反對稱腔體 之MOCVD模擬設計分析
★ MOCVD水平式腔體中氮化鎵薄膜製程碳濃度之模擬與傳輸現象分析★ MOCVD 行星式腔體之模型建立與傳輸現象分析
★ 柴氏法生長6~8吋矽單晶之高溫梯爐體與製程設計模擬★ 300mm矽晶圓片於平坦度10奈米以下磊晶製程之數值模擬分析
★ 以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究★ 二段陽極處理法應用於鈦薄膜成長之研究
★ 交流電發光二極體之接面溫度與熱阻量測研究★ 液滴於具溫度梯度的微流道之數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究探討MOCVD製程中生長AlN薄膜的複雜化學機制和傳輸現象,研究發現間歇性噴流設計對降低製程中氣相微粒(Particle)產生及增加沉積速率有良好的影響,可透過寄生反應及物種擴散速率作很好的解釋,特別是在高溫和高壓條件下生長速率降低的機制。TMAl與NH3混合反應後會產生TMAl:NH3之加合物,加合物之熱裂解反應路徑所產生之二聚體(dimer)及三聚體(trimer)會形成無法貢獻長率之n-聚體(n>3)及氣相微粒,使反應氣體利用效率降低,是造成增加溫度及壓力使生長效率降低的主要原因。
  為了探討在生長AlN薄膜時所產生之寄生反應,本研究先建立在入口處反應氣體TMAl、NH3及載氣H2同時混合之穩態模型,與文獻之實驗結果進行比對驗證,並探討在不同溫度、壓力、反應前驅物流量及載氣流量對薄膜生長速率的影響。
  接著本研究透過氣體脈衝方法[Pulsed Injection (PI) Method],在持續供應載氣H2的情況下控制反應源氣體TMAl及NH3噴入反應腔體間隔時間(0-0.3秒),以抑制TMAl與NH3混合所產生之寄生反應,藉此減少聚合物及Particles之生成,提高反應源氣體使用效率。研究發現隨著反應源氣體進入反應腔體之間隔時間增加, TMAl與NH3的混合可以有效的抑制,主要反應路徑由TMAl:NH3熱裂解轉變為TMAl自身熱裂解反應,TMAl熱裂解所產生之Al*與NH3自身反應所產生的NH2*表面物種會成為主要物種,透過表面摘取反應吸附成為AlN薄膜。研究結果顯示,當氣體脈衝間隔時間為0.2秒時,可以有效降低Particles形成,並將沉積速率保持在大致相同的值,Al含量也因此增加,提高晶體品質。反應氣體間隔時間不能為無限大,會減少氣體停留時間,使沉積率下降。
摘要(英)
In this study, a complicated chemical mechanism and mass transport phenomena of growing AlN films in metal organic chemical vapor deposition prosess were disscussed. It is found that the pulsed MOCVD design has a good effect on reducing particle generation and increase the deposition rate. It can be explained by the parasitic reactions and diffusion rate, especially the mechanism of reducing the growth rate under high temperature and high pressure. The mixture of TMAl and NH3 will produce TMAl:NH3 adducts. The dimer and trimer which produced from the TMAl:NH3 adduct-derived route will form n-mers (n>3) and particles deposit on the walls and do not contribute to the growth. The reduction of the utilization efficiency of the reaction gas is the main reason that cause the decrease of the deposition rate.
  In order to study the parasitic reaction of growing AlN films. The steady state model of TMAl, NH3 and H2 mixed gas at the inlet was established, and compared with the experimental results of the literature. The effects of temperature, pressure, precursor flow rate and carrier gas flow rate were discussed.
  The precursors were injected into the reaction chamber by pulsed injection (PI) method. Interval times of (0-0.3s) were inserted between TMAl and NH3 supplied. The carrier gas H2 was continuously supplied to supress parasitic reactions. With the increase of interval time, the mixing of TMAl and NH3 could be effectively suppressed, and the TMAl polysis path becomes the main growth pathway. The Al atoms from TMAl pyrolysis and NH2 molecules from NH3 self reaction will become the main surface species and adsorbed into AlN film with abstration reaction.
  The result shows that 0.2 second is the best interval times, that particle formation can be reduced effectively. It is found that the pulsed injection method not only can kept the deposition rate at almost same value, but also improve the crystal quality. The interval time width cannot be indefinitely large, it will reduce the gas residence time and decrease the deposition rate.
關鍵字(中) ★ 氣體脈衝方法
★ 金屬有機化學氣相沉積
★ 氮化鋁
★ 氣相奈米微粒
關鍵字(英) ★ Pulsed Injection Method
★ Metal Organic Chemical Vapor deposition
★ Aluminium Nitride
★ Gas phase particle
★ MOCVD
論文目次
摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 IX
符號說明 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 MOCVD薄膜沉積過程 2
1-2-1 氣相反應過程 2
1-2-2 薄膜表面成長過程 3
1-2-3 吸附過程 3
1-3 MOCVD反應腔體中的傳輸現象 5
1-3-1 水平式腔體中的傳輸現象 5
1-3-2 垂直式腔體中的傳輸現象 5
1-3-3 近耦合噴淋式與高速載盤旋轉式腔體 6
1-4 文獻回顧 7
1-5 研究動機與目的 12
第二章 研究方法 29
2-1 數學模型 29
2-1-1 物理系統與基本假設 29
2-1-2 分段脈衝方法 (Pulsed Injection Method) 30
2-1-3 統御方程式 30
2-1-4 邊界條件 32
2-2 化學反應方程式 33
2-2-1 氣相化學反應 33
2-2-2 表面化學反應 34
2-3 混合氣體物理參數 35
2-4 化學反應路徑 37
2-4-1 氣相反應 (Gas phase reactions) 37
2-4-2 寄生反應 (Parasitic Reactions) 38
2-4-3 熱泳效應 (Phenomenon of thermophoresis) 39
2-4-4 表面反應 (Surface Reactions) 39
2-5 表面化學計算 40
2-5-1 表面碰撞原理 (Collision Theory) 40
2-5-2 吸附反應 (Adsorption reaction) 40
2-6 薄膜沉積速率 42
2-7 無因次參數 43
第三章 數值方法 51
3-1 數值求解步驟 51
3-2 網格配置測試 51
3-3 收斂公差測試 51
3-4 時間步階測試 52
第四章 結果與討論 57
4-1 穩態模型驗證 57
4-1-1 溫度與沉積速率之關係 57
4-1-2 腔體壓力之影響 58
4-1-3 改變NH3流量之影響 58
4-1-4 改變TMAl流量之影響 58
4-1-5 改變載氣H2流量之影響 59
4-1-6 改變入口數量及配置之影響 59
4-2 使用PI方法生長AlN薄膜 60
4-2-1 PI方法對生長AlN薄膜之影響 60
4-2-2 暫態PI模型建立 61
4-2-3 使用PI方法在不同溫度改變間隔時間對薄膜生長之影響 62
4-2-4 使用PI方法改變NH3流量對薄膜生長之影響 64
4-2-5 使用PI方法改變 TMAl流量對薄膜生長之影響 64
4-2-6 使用PI方法改變H2流量對薄膜生長之影響 65
第五章 結論與未來研究方向 91
5-1 結論 91
5-2 未來研究方向 93
參考文獻 94
參考文獻
[1] Kenichi Nakamura, Akira Hirako, and Kazuhiro Ohkawa,“Analysis of pulsed injection of precusors in AlN-MOVPE growth by computational fluid simulation”, Phys. Status Solidi, Vol 7, pp. 2268–2271, May 2010.
[2] D.G. Zhao, J.J. Zhu, D.S. Jiang, Hui Yang, J.W. Liang, X.Y. Li, and H.M. Gong,“Parasitic reaction and its effect on the growth rate of AlN by metalorganic chemical vapor deposition”, Journal of Crystal Growth, Vol 289, pp. 72-75, January 2006.
[3] Theodoros G. Mihopoulos, Vijay Gupta ,and Klavs F. Jensen,“A reaction-transport model for AlGaN MOVPE growth”, Journal of Crystal Growth, Vol 195, pp. 733-739, 1998.
[4]左然和李暉,「MOCVD反應器的最佳運輸過程及其優化設計」,半導體學報,29(6),1164-1171頁,2008。
[5] Keunjoo Kim and Sam Kyu Noh,“Reactor design rules for GaN epitaxial layer growths on sapphire in metal–organic chemical vapour deposition”, Vol 15, pp. 868–874, May 2000.
[6] Andrew N. Jansen, Mark E. Orazem, Bradley A. Fox, and William A. Jesser,“Numerical study of the influence of reactor design on MOCVD with a comparison to experimental data”, Journal of Crystal Growth, Vol 112, pp. 316-336, January 1991.
[7] E Raj, Z Lisik, P Niedzielski, L Ruta, M Turczynski, X Wang, and A Waag, “Modelling of MOCVD Reactor: New 3D Approach”, Journal of Physics, Vol 494, pp. 211-215, 2014.
[8] Li Hui,“Mass transport analysis of a showerhead MOCVD reactor”, Journal of Semiconductors, Vol 32(3), March 2011.
[9] L. Kadinski, V. Merai, A. Parekh, J. Ramer, E.A. Armour, R. Stall,
A. Gurary, A. Galyukov, and Yu. Makarov,“Computational analysis of GaNInGaN deposition in MOCVD vertical rotating disk reactors”, Journal of Crystal Growth, Vol 261, pp. 175-181, 2004.
[10] Haibo Yin, Xiaoliang Wang, Guoxin Hu, Junxue Ran, Hongling Xiao, and Jinmin Li,“Operational Optimization of GaN Thin Film Growth Employing Numerical Simulation in a Showerhead MOCVD Reactor”, Chinese Academy of Sciences, 2008.
[11] Takeshi Uchida, Kazuhide Kusakabe, Kazuhiro Ohkawa,“ Influence of polymer formation on metalorganic vapor-phase epitaxial growth of AlN”, Journal of Crystal Growth, Vol 304, pp. 133-140, February 2007.
[12] Qilong Bao, TiankaiZhu, NingZhou, ShipingGuo, Jun Luo, Chao Zhao,“Effect of hydrogen carrier gas on AlN and AlGaN growth in AMEC Prismo D-Blue® MOCVD platform”, Journal of Crystal Growth, Vol 419, pp.52-56, March 2015.
[13] Linda R. Black, Ivan O. Clark, Bi adley A. Fox, and William A. Jesser, “MOCVD of GaAs in a horizontal reactor modeling and growth”, Journal of Crystal Growth, Vol 109, pp. 241-245, 1991.
[14] Alexandre Ern, incent Giovangigli, and Mitchell D. Smooke,“ Numerical Study of a Three-Dimensional Chemical Vapor Deposition Reactor with Detailed Chemistry”, Journal of computational physics, Vol 126, pp. 21-39, November 1995.
[15] Sandip Mazumder, and Samuel A. Lowry,“ The importance of predicting rate-limited growth for accurate modeling of commercial MOCVD reactors”, Journal of Crystal Growth, Vol 224, pp.165-174, January 2001.
[16] Rinku P. Parikh, Raymond A. Adomaitis, Michael E. Aumer, Deborah P. Partlow, Darren B. Thomson, and Gary W. Rubloff ,“ Validating gallium nitride growth kinetics using a precursor delivery”, Journal of Crystal Growth, Vol 296, pp. 15-26, July 2006.
[17]A.V. Lobanova, E.V. Yakovlev, R.A Talalaev, S.B. Thapa, F. Scholz ,“ Growth conditions and surface morphology of AlN MOVPE”, Journal of Crystal Growth, Vol 310, pp.4935-4938, August 2008.
[18]Derek Endres, and Sandip Mazumder ,“Numerical investigation of pulsed chemical vapor deposition of aluminum”, Journal of Crystal Growth, Vol 335, pp. 42-50, August 2011.
[19] Zesheng Ji, Lianshan Wang, Guijuan Zhao, Yulin Meng, Fangzheng Li, Huijie Li, Shaoyan Yang, and Zhanguo Wang,“Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition”, Chin. Phys. B, Vol 26(7), May 2017.
[20]林瑤,「考量氣體分子吸附性質之MOCVD垂直反應腔體模擬分析」,國立中央大學,碩士論文,民國104年。
[21] Anil K. Kandalam , Ravindra Pandey , M. A. Blanco , Aurora Costales , J. M. Recio and John M. Newsam,“First Principles Study of Polyatomic Clusters of AlN, GaN, and InN. 1. Structure, Stability, Vibrations, and Ionization”, J. Phys. Chem. B, Vol 104 , pp.4361-4367, February 2000.
指導教授 陳志臣 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明