博碩士論文 104328010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:54.158.194.80
姓名 李紹齊(Shao-Chi Lee)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱
(Numerical analysis of a rotary warm forming process for rim thickening of a steel disc plate)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 以數值模擬與實驗驗證研究 精密深溝滾珠軸承多道次溫間鍛造製程 -缺陷分析與模具設計合理化
★ 釩氧化還原液流電池中多孔性碳電極在壓縮與電鍍後之電性、機械性質與型態分析★ 使用適應性光學模組之金屬表面粗糙度量測系統
★ 氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測★ 近場電紡絲技術應用於可控制多根奈米纖維生成、選擇性沉積及奈米流道之製備
★ 奈米射出成形技術及光學特性研究★ 近場電紡織研究-與傳統電紡織比較、自組織多根射流暨可排列奈/微米金屬纖維轉印成可撓之透明電極
★ 1.7 伏特奈米發電機-以直寫式近場電紡織奈米纖維並透過原位極化製作於可撓性基底★ 近場電紡絲技術應用於可控制幾丁聚醣/聚氧化乙烯之奈米纖維排列、電壓調整及細胞擴散研究
★ 具適應性光學輔助之快速表面粗糙度量測: Zr-based BMG及流體層像差校正之應用★ 結合適應性光學校正系統之流體透鏡特性與像差研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬成型中的迴轉成型適用於汽車引擎中傳動盤製造中的外緣增厚工程,在HCCI引擎中,傳動盤的轉動慣量必須比SI引擎來得大以吸收燃燒時產生的周期性變動,然而在冷間迴轉成型中,圓盤外徑的增厚比上限為30,無法達到在HCCI引擎中傳動盤所需要的轉動慣量,於是溫間的迴轉成型被提出來改善此現像,將圓盤鋼鐵板材的外緣部加熱進行迴轉成型以增加傳動盤的增厚比。
在本文裡,將介紹以FEA數值模擬的方式來檢驗溫間迴轉成型的可行性及其尋找其增厚比的極限,在此選擇S35C、2.6mm厚度的圓盤鋼鐵板材,利用有限元素分析軟體Simufact forming進行數值模擬,確認合適的成形條件例如圓盤半徑、加熱條件等,用以將增厚比成長到過去的兩倍。在第一階段,利用過去的成型條件,確認了冷間迴轉成型的成形極限為圓盤半徑169mm,增厚比為36;第二階段利用不同的加熱條件將冷間成型中無法順利成行的圓盤進行成型模擬,以確認合適的加熱溫度;最後則以第二階段獲得的合適加熱條件來進行溫間迴轉成型的模擬,確認了當圓盤外緣的加熱溫度為400℃時,迴轉成型的成型極限為圓盤半徑185mm,增厚比60,換言之,在此條件下,能夠成功地將增厚比提升到過去的兩倍。
摘要(英) The rotary forming process is used for thickening the rim part of the drive plate of automotive engines. It is requested to increase the inertia of the drive plate in new HCCI engine for absorbing the cyclic variation which emerges from the ignition. However, the rim thickening ratio of the present cold rotary forming process is limited as 30, which cannot satisfy the requirement for the new drive plate. Thus, in order to increase the rim thickening ratio of the disk-like blank plate, the new warm rotary forming process, in which only the rim part of the disk blank is heated locally prior to forming, is proposed.
This thesis focuses on the numerical simulation of the proposed warm rotary forming process for thickening the rim of a S35C circular blank whose thickness is 2.6 mm. Analytical investigation is carried out using the FEA software Simufact forming in order to find suitable forming conditions such as the blank radius and the initial heating temperature where the rim thickening ratio can be doubled. Firstly, the upper limit of the rim thickening ratio for the previous cold rotary forming process was found to be 36 when the blank radius is 169mm. Then an appropriate blank radius and the temperature requirement for the new warm rotary forming process were investigated. The simulation results were compared to confirm the feasibility and forming limit of the rim thickening ratio of the warm rotary forming process. Finally, it can be concluded that the rim thickening ratio reaches the maximum possible value of 60 without any defect when the blank radius is 185 mm and the initial heating temperature is 400℃. In other words, under this condition, the rim thickening ratio has been successfully doubled compared to the previous value.
關鍵字(中) ★ 迴轉成型
★ 溫間迴轉成型
關鍵字(英) ★ rotary cold forming
★ rotary warm forming
論文目次 Outline
摘要 i
ABSTRACT ii
Acknowledgements iii
Outline iv
List of figures v
List of tables vii
Explanation of Symbols viii
1. Introduction 1
2. Previous cold rotary forming process 9
2.1. Outline of cold rotary forming process 9
2.2. Elastic–plastic finite element analysis (FEA) model 9
2.3 Material properties 12
2.4 Boundary conditions 13
2.5 Simulation results 14
3. New warm rotary forming process 19
3.1 Outline of new warm rotary forming process and its analysis 19
3.2 Elastic–plastic finite element analysis (FEA) model 22
3.3 Material properties 22
3.4 Boundary conditions 28
3.5 Simulation conditions 31
3.5.1 Blank radius – to find forming limit at room temperature 31
3.5.2 Forming temperature – to find the lowest initial temperature requirement for the warm rotary forming to achieve the target thickening ratio 32
4. Results and discussion 33
4.1 Simulation results with various blank radii without heating 33
4.2 Simulation results with various heating temperatures 40
4.2.1 Heating process 40
4.2.2 Suitable temperature condition 42
4.2.3 Maximum rim thickening ratio 45
4.3 Discussion 48
5. Conclusion 50
Reference 52
參考文獻
[1] Climate scientists discuss future of their field, 2015. Nature.
[2] Mora, C (2013). ”The projected timing of climate departure from recent variability”. Nature.
502 (7470): 183–187.
[3] Zhao, F.Q., Asmus, Thomas W., Assanis, Dennis N.; Dec, John E.; Eng, James A.; Najt, Paul
M., 2003. Homogeneous Charge Compression Ignition (HCCI) Engines: Key Research and
Development Issues. Society of Automotive Engineers. 11–12
[4] Stanglmaier, Rudolf, 1999. Homogeneous Charge Compression Ignition (Hcci): Benefits,
Compromises, and Future Engine Applications. Society of Automotive Engineers. 1999-01-
3682.
[5] Warnatz, J., Maas, U., Dibble, R.W., 2006. Combustion: Physical and Chemical
Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Springer. 175–
176.
[6] Musica, O., Allwood, J.M., Kawai, K., 2010. A review of the mechanics of metal
spinning.Journal of Materials Processing Technology 210, 3–23.
[7] Kitazawa, K., Wakabayashi, A., Murata, K., Seino, J., 1994. A CNC incremental sheet metal
forming method for producing the shell components having sharp components. Journal of
the Japan Society for Technology of Plasticity 35 (406), 1348–1353.
[8] Matsubara, S., 2001. A computer numerically controlled dieless incremental forming of a
sheet metal. Proceedings of the Institution of Mechanical Engineers Part B. Journal of
Engineering Manufacture 215 (7), 959–966.
[9] Shima, S., Kotera, H., Murakami, H., 1997. Development of flexible spin-forming method.
Journal of the Japan Society for Technology of Plasticity 38 (440), 814–818.
[10] Kawai, K., Yang, L.N., Kudo, H., 2007. A flexible shear spinning of axi-symmetrical shells
with a general-purpose mandrel. Journal of Materials Processing Technology 192–193, 13–
17.
[11] Zhang, S.H., Li, M.S., Xu, Y., Kang, D.C., Li, C.Z., 2005. Introduction to a new CNC ball
spinning machine. Journal of Materials Processing Technology 170, 112–114.
[12] Jiang, S.Y., Ren, Z.Y., Li, C.F., Xue, K.M., 2009. Role of ball size in backward ball spinning
of thin-walled tubular part with longitudinal inner ribs. Journal of Materials Processing
Technology 209, 2167–2174.
[13] Rotarescu, M.I., 1995. A theoretical analysis of tube spinning using balls. Journal of
Materials Processing Technology 54, 224–229.
[14] Huang, L., Yang, H., Zhan, M., Hu, L.J., 2008. Numerical simulation of influence of
52
material parameters on splitting spinning of aluminum alloy. Transactions of Nonferrous
Metals Society of China 18, 674–681.
[15] Huang, L., Yang, H., Zhan, M., Hu, L.J., 2009. Forming characteristics of splitting spinning
based on the behaviors of roller. Computational Materials Science 45, 449–461.
[16] Jin, J. S., Deng, L., Wang, X. Y., Xia, J. C., 2012. A new rotary forming process for rim
thickening of a disc-like sheet metal part. Journal of Materials Processing Technology 212,
2247-2254
[17] Jin, J. S., Wang, X. Y., Li, L., 2016. A sheet blank rotary forging process for disk-like parts
with thickened rims. Journal of Mechanical Science and Technology 30 (6), 2723-2729
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2017-9-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明