博碩士論文 104328602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.14.70.203
姓名 佐爾法(Zulfa Khalida)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 製冷劑R-245fa在石墨烯塗層中的冷凝傳熱整體翅片管
(Condensation Heat Transfer of Refrigerant R-245fa on Graphene Coating Integral Fin-Tubes)
相關論文
★ 不同集管型式多流道熱交換器流動分佈研究★ 冷媒R-245fa於不同石墨烯塗佈鰭管上凝結熱傳性能之實驗分析
★ 低溫熱管設計及性能研究★ 吸附式空調系統之微鰭板蒸發/冷凝器凝結熱傳增強性能研究
★ 平板震盪型熱管均熱片研究★ 薄矽膠層吸附床之性能研究
★ 小型吸附式空調系統研究★ 變頻空調機在不同環境下之控制策略
★ 水-空氣在板式熱交換器內的流動觀察★ 以紅外線熱像分析冷媒R410A在板式熱交換器內之蒸發熱傳性能
★ 不同粒徑微多孔表面在狹小空間內之池沸騰熱傳性能研究★ 梯形流道表面之池沸騰熱傳性能研究
★ 石墨烯塗佈銅管外凝結熱傳性能研究★ 超臨界R-410A與R-32熱傳及壓降性能之研究
★ 不同性能風扇對熱傳增強鰭片之性能研究★ 使用FAM Z05沸石對水之小型吸附式空調性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大部分冷凝器的熱傳表面具有高表面能的特性,所以比起滴狀冷凝而言更容易在熱傳表面上生成液膜形成膜狀冷凝。然而膜狀冷凝具有高熱阻的特性進而導致熱傳性能低落。而滴狀冷凝則會在表面上形成許多顆粒液滴而不會形成液膜熱阻,使滴狀冷凝的熱傳性能超過膜狀冷凝的四倍。所以可藉由將冷凝器表面改為疏水性表面產生滴狀冷凝的效果。
在冷凝器中經常將石墨烯濺鍍至熱傳表面上形成疏水性表面,因為石墨烯具有高化學穩定性及高耐久性的特點。不幸的是,對於低表面張力的液體,濺鍍石墨烯無法形成滴狀冷凝。可藉由R-245fa的接觸角來證明R-245fa在純銅及具有石墨烯塗層的銅上的接觸角幾乎沒有差異。但是實際上藉由濺鍍石墨烯仍有達到接觸角為小幅度提升或表面能降低的效果。
本實驗使用化學氣相層積法(CVD),將石墨烯濺鍍至純銅圓鰭管表面上以提升冷凝熱傳性能。透過增加小幅度的接觸角,鰭管可在排水區域形成更少的冷凝液使傳熱面積增加。此外,接觸角的增強受到鰭片間距極大影響,這是因為鰭片間距與冷凝液形成及冷凝液的曲率有關。較大的鰭片間距顯示比起較小的鰭片間距有著更凹的半月形狀,並且接觸角也有著較大的提升。
摘要(英)
Most of the heat exchanger materials in condensation system associate with high surface energy and prefer inducing film than droplet on the surface. This film condensation mode generates high thermal resistance and leads low heat transfer performance. Meanwhile, the yielded heat transfer performance by dropwise condensation exceeds almost four times higher than filmwise condensation due to providing faster re-nucleation with smaller departure drop size. The dropwise mode occurs due to functionalization of surface becomes hydrophobic surface.
Graphene is frequently used in the condensation system as hydrophobic promoter since offering high chemical stability to induce droplet on the surface with long durability. Unfortunately, the critical surface energy of graphene is not low enough to induce droplet for low surface tension liquid. This is proved by the contact angle difference of R-245fa whose low surface tension, on the graphene coating and bare copper only has a little difference. Even though the contact angle of R-245fa on the graphene coating and bare copper show almost no difference but the contact angle enhancement must occur or at least the wettability on the surface decreases since decreasing surface energy after graphene coating.
Furthermore, the experimental investigation has been conducted to enhance the heat transfer performance of R-245fa on the horizontal integral fin tube surface which is coated by chemical vapor deposition (CVD) graphene. The integral fin tube provides thinning condensate on the drainage area which leads higher chance to increase heat transfer area by enhancing contact angle. Moreover, the contact angle enhancement is immensely affected by fin spacing due to fin spacing controls the occupied condensate and condensate curvatures. Higher fin spacing shows more concave meniscus shape than smaller fin spacing and leads higher chance for contact angle enhancement than smaller fin spacing.
關鍵字(中) ★ 冷凝熱傳遞
★ 石墨烯塗層
★ 翅片管
關鍵字(英) ★ Condensation heat transfer
★ Graphene coating
★ Fin tube
論文目次
ABSTRACT vi
ACKNOWLEDGEMENTS vii
TABLE OF CONTENTS viii
LIST OF FIGURES x
LIST OF TABLES xii
NOMENCLATURES xiii
CHAPTER I INTRODUCTION 1
1.1 Background 1
1.2 Thesis Objectives 4
CHAPTER II LITERATURE REVIEW 5
2.1 Condensation 5
2.2 Condensation on Integral Fin Tube 5
2.3 Condensation on Hydrophobic Surface 10
2.4 Graphene on the Integral Fin Tube 13
2.5 Summary 14
CHAPTER III EXPERIMENTAL SETUP 16
3.1 Test Section 16
3.1.1 Fin Spacing Design 16
3.1.2 Surface Treatment 22
3.1.3 Graphene Characterization 22
3.2 Experimental Setup 22
3.3 Condensation Method 25
3.3.1 Leakage Testing 25
3.3.2 Vacuum Condition 25
3.3.3 Minimum Refrigerant Charging 26
3.4 Data Gathering 27
3.4.1 Recognizing of Experimental Condition to NIST 31
3.4.2 Collecting Data 32
3.4.3 Validiting Data 32
CHAPTER IV RESULT AND DISCUSSION 36
4.1 Condensation on Bare Tube 36
4.2 Integral Fin Tube 37
4.2.1 Effects of Saturation Temperature 39
4.2.2 Effects of Different Fin Spacing 43
4.3 Graphene Coating Surface 47
4.3.1 Characterization of Graphene Surface 47
4.3.2 Condensation on the Graphene Surface 49
CHAPTER V CONCLUSION 58
5.1 Conclusion and Recommendation 58
REFERENCES 59
參考文獻
[1] J.R. Collier, John G and Thome, Convective boiling and condensation, third edit, Oxford University Press Inc, New York, (2001).
[2] S. Khandekar, K. Muralidhar, Dropwise condensation on inclined textured surfaces, Springer, New York, (2014).
[3] D.J. Preston, D.L. Mafra, N. Miljkovic, J. Kong, E.N. Wang, Scalable graphene coatings for enhanced condensation heat transfer, Nano Letters. 15 (2015) 2902–2909.
[4] H.C. Hsieh, Study on condensation heat transfer performance of graphene coating on copper surface, National Central University, (2016).
[5] Nusselt (1916) quoted in B. Memory, Free convection laminar film condensation on a horizontal tube with variable wall temperature, International Journal of Heat and Mass Transfer. 34 (1991) 2775–2778.
[6] Rohsenow (1956) quoted in A.F. Mills, R.A. Seban, The condensation coefficient of water, International Journal of Heat and Mass Transfer. 10 (1967) 1815–1827.
[7] R.L. Webb, Principles of Enhanced Heat Transfer, second-edi, Taylor & Francais Group, New York, (1994).
[8] T. Adamek, R.L. Webb, Prediction of film condensation on horizontal integral fin tubes, International Journal of Heat and Mass Transfer. 33 (1990) 1721–1735.
[9] H. Honda, N. Takata, H. Takamatsu, J.S. Kim, K. Usami, Condensation of downward-flowing HFC134a in a staggered bundle of horizontal finned tubes : effect of fin geometry ´ coulement descendant dans Condensation de HFC134a en e un faisceau horizontal de tubes ailetes en quinconce : effet de ´ ometrie des ailet, International Journal of Refrigeration. 25 (2002) 3–10.
[10] J.R. Thome, Condensation on external surfaces, Wolverin Tube Inc, NE Decature AL, (2007).
[11] A. Briggs, J.W. Rose, Effect of fin efficiency on a model for condensation heat transfer on a horizontal, integral-fin tube, International Journal of Heat and Mass Transfer. 37 (1994) 457–463.
[12] S. Namasivayam, A. Briggs, Condensation of ethylene glycol on integral-fin tubes: effect of fin geometry and vapor velocity, ASME Journal of Heat Transfer. 127 (2005) 1197–1206.
[13] R. Kumar, A. Gupta, S. Vishvakarma, Condensation of R-134a vapour over single horizontal integral-fin tubes: Effect of fin height, International Journal of Refrigeration. 28 (2005) 428–435.
[14] S.K. Sajjan, R. Kumar, A. Gupta, Experimental investigation during condensation of R-600a vapor over single horizontal integral-fin tubes, International Journal of Heat and Mass Transfer. 88 (2015) 247–255.
[15] H. Masuda, J.W. Rose, Static configuration of liquid films on horizontal tubes with low radial fins: implications for condensation heat transfer, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 410 (1987) 125–139.
[16] J.W. Rose, Surface tension effects and enhancement of condensation heat transfer, Chemical Engineering Research and Design. 82 (2004) 419–429.
[17] Beatty and Katz (1948) quoted in J.W. Rose, An approximate equation for the vapour-side heat-transfer coefficient for condensation on low-finned tubes, International Journal of Heat and Mass Transfer. 37 (1994) 865–875.
[18] H. Honda, S. Nozu, A prediction method for heat transfer during film condensation on horizontal low integral-fin tubes, Transaction ASME. Journal of Heat Transfer. 109 (1987) 218–225.
[19] J. Rafiee, M.A. Rafiee, Z.Z. Yu, N. Koratkar, Superhydrophobic to superhydrophilic wetting control in graphene films, Advanced Materials. 22 (2010) 2151–2154.
[20] S. Wang, Y. Zhang, N. Abidi, L. Cabrales, Wettability and surface free energy of graphene films, Langmuir. 25 (2009) 11078–11081.
[21] R. Raj, S.C. Maroo, E.N. Wang, Wettability of graphene, Nano Letters. 13 (2013) 1509–1515.
[22] J. Rafiee, X. Mi, H. Gullapalli, A. V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan, N. a. Koratkar, Wetting transparency of graphene, Nature Materials. 11 (2012) 217–222.
[23] A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B. D’Urso, H. Liu, L. Li, Study on the surface energy of graphene by contact angle measurements., Langmuir : The ACS Journal of Surfaces and Colloids. 30 (2014) 8598–606.
[24] R.L. Webb, T. Rudy, M.A. Kedzierski, Prediction of the condensation coefficient on horizontal integral-fin tubes, International Journal of Heat and Mass Transfer. 107 (1985) 369–376.
[25] J.W. Rose, On the mechanism of dropwise condensation, International Journal of Heat and Mass Transfer. 10 (1966) 755–762.
[26] D. Torresin, M.K. Tiwari, D. Del Col, D. Poulikakos, Flow condensation on copper-based nanotextured superhydrophobic surfaces, Langmuir. 29 (2013) 840–848.
[27] C.W. Pao, T.H. Liu, C.C. Chang, D.J. Srolovitz, Graphene defect polarity dynamics, Carbon. 50 (2012) 2870–2876.
[28] A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers, Physical Review Letters. 97 (2006) 1–4.
[29] M. Wall, The raman spectroscopy of graphene and the determination of layer thickness, in: Thermo Scientific, Thermo Fisher Scientific Inc, Madison, (2011).
[30] F.M. Fowkes, Attractive forces at interfaces, Industrial & Engineering Chemistry. 56 (1964) 40–52.
[31] K. Rykaczewski, A.T. Paxson, M. Staymates, M.L. Walker, X. Sun, S. Anand, S. Srinivasan, G.H. McKinley, J. Chinn, J.H.J. Scott, K.K. Varanasi, Dropwise condensation of low surface tension fluids on omniphobic surfaces, Scientific Reports. 4 (2014) 4158/1-4158/8.
[32] T.G. Karayiannis, M.M. Mahmoud, Flow boiling in microchannels: Fundamentals and applications, Applied Thermal Engineering. 115 (2017) 1372–1397.
指導教授 楊建裕(Chien-Yuh Yang) 審核日期 2017-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明