博碩士論文 104329001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.145.178.240
姓名 黃浩慈(Hao-Tzu Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 熱解法製備硬碳材料應用於鈉離子電池負極
(Pyrolysis Synthesis of Hard Carbon Materials as Anodes for Sodium-ion Batteries)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 陽極沉積釩氧化物於離子液體中之擬電容行為
★ 以電化學沉積法製備奈米氧化釩及錫在多孔鎳電極上與其儲電特性★ 以超臨界流體製備石墨烯/金屬複合觸媒並 探討其添加對氫化鋁鋰放氫特性的影響
★ 離子液體電解質應用於石墨烯超級電容之特性分析★ 溶劑熱法合成三硫化二銻複合材料應用於鈉離子電池負極
★ 利用超臨界流體製備二氧化錫/石墨烯奈米複合材料 應用於鈉離子電池負極★ 電解質添加劑對鋅二次電池陽極電化學性質的影響
★ 電化學法所製備石墨烯及其硼摻雜改質之 超級電容特性分析★ 氫化二氧化鈦作為鋰、鈉、鎂鋰雙離子電池電極活性材料之電化學性質研究
★ 活性碳之粒徑與表面官能基以及所搭配的電解質配方對超高電容特性之影響★ 超臨界CO2合成SnO2、CoCO3與石墨烯複合材之儲鋰特性及陽極沉積層狀V2O5之儲鈉特性研究
★ 高濃度電解質於鋰電池知應用研究★ 活性碳粉之表面官能基及粒徑尺寸 對超高電容特性的影響
★ 離子液體電解質於鈉離子電池之應用★ 研發以二氧化錫為負極材料的鈉離子電池: 電解液、輔助性碳材料與黏著劑的優化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以熱解法製備源自生物質的硬碳負極應用於鈉離子電池為主軸,探討不同生物質前驅物(蘋果和甘蔗渣)、熱處理溫度對材料性質和電化學特性之關聯性。於750 oC ~ 1050 oC的熱處理溫度範圍內,顯示在950 oC下,由於碳材有適當的比表面積、含氧官能基以及微量的石墨帶,因此,表現出最佳化之電化學特性。源自生物質(蘋果和甘蔗渣)之硬碳電極在1 M NaClO4-EC/DEC電解液中測試分別可得249、234 mAh g -1之電容值(0.03 A g -1),此外,首圈庫倫效率分別達56、52%。當電流密度提升至2 A g -1時,可分別得78、85 mAh g -1之電容值。
本研究第二部分將探討硬碳負極在不同電解液中之電化學特性。在高濃度下的電解液由於溶劑會與鈉離子作用配位,使得原先的自由離子(Free)轉變成具有作用力的離子(Solvating),整體電解液可視為高交聯性高分子,能穩定電化學反應。在高濃度的NaFSI-EC/PC電解液中,於0.03、2 A g -1之電流密度下分別可得299、86 mAh g -1之電容值,此電性表現具有室溫應用價值之潛力,克服傳統刻板觀念之高濃度配方的高黏度不適合作為電解液之瓶頸。此外,高濃度電解液優良的電化學穩定性可提升硬碳電極之首圈庫倫效率(80%)。循環壽命方面,有別於低濃度NaFSI-EC/PC的低電容維持率(78%),高濃度的NaFSI-EC/PC電解液於50圈充放電循環後能維持99%的電容維持率。
摘要(英) In this study, the hard carbon derived from biomass using the pyrolysis synthesis method was employed as anode for sodium-ion battery. The effect of different biomass precursors (apple and sugar cane bagasse) and the heat treatment temperature on the structure and electrochemical properties of hard carbon for sodium storage properties were discussed. In the heat treatment temperature range between 750 oC to 1050 oC, it is found that hard carbon obtained at 950 oC shows superior electrochemical performance due to the proper specific surface area, oxygen-containing functional groups and trace amounts of graphite. The sodiation/desodiation properties were tested in 1 M NaClO4-EC/DEC electrolyte and capacities of 249 and 234 mAh g -1 was obtained at a current density of 0.03 A g -1 for hard carbon derived from apple and sugar cane bagasse biomass, respectively. At a high current density of 2 A g -1, capacities of 78 and 85 mAh g -1 can be obtained, respectively. The biomass derived hard carbon offered the outstanding cyclic stability of ~ 92% after 200 cycles at 0.1 A g -1.
This study also explores the electrochemical properties of commercial hard carbon in different electrolytes (NaFSI in EC/PC and NaPF6 in EC/PC) with different concentrations (1 M, 2 M and 3 M). In the case of high concentration electrolyte, the solvent will react with Na-ions, so that the free ion will solvating and the overall electrolyte can be regarded as a high cross-linked polymer that can stabilize the electrochemical reaction. In high concentration 3 M NaFSI in EC/PC electrolyte, a maximum capacity of 299 mAh g -1 was obtained at current density of 0.03 A g -1. A capacity of 86 mAh g -1 is achieved at a high current density of 2 A g -1. In addition, first cycle coulombic efficiency (80%) obtained using 3 M NaFSI in EC/PC is the maximum ever achieved for any kind of hard carbon. The exceptional cycle stability of (~ 99%) is achieved for 3 M as compared to 1 M NaFSI in EC/PC (~ 78%) after 50 cycles at 0.1 A g -1. This study shows the high concentration electrolytes can be an ideal choice of electrolytes for high-performance sodium-ion batteries.
關鍵字(中) ★ 鈉離子電池
★ 生物質
★ 硬碳
★ 負極
★ 高濃度電解液
關鍵字(英) ★ Sodium-ion batteries
★ Biomass
★ Hard Carbon
★ Anode
★ High concentration electrolyte
論文目次 摘要 I
Abstract II
誌謝 IV
總目錄 VI
表目錄 XI
圖目錄 XIV
第一章 緒論 1
1-1 研究動機 1
第二章 研究背景與文獻回顧 3
2-1 鈉離子電池之碳系負極材料 3
2-1-1 石墨類碳材 5
2-1-2 非石墨類碳材 6
2-2 硬碳負極於鈉離子電池之應用與工作機制 10
2-3 源自生物質的硬碳負極材料 13
2-3-1 源自生物質的硬碳材料應用於鈉離子電池之研究現況 14
2-3-2 源自生物質的碳材成分之影響及產量 22
2-3-3 源自生物質的碳材之結構特性 24
2-4 有機電解液 29
2-5 高濃度電解液 34
2-5-1 高濃度電解液應用於鈉離子電池之研究現況 37
2-5-2 高濃度電解液應用於鋰離子電池負極之研究現況 43
2-5-3 鹽類與溶劑之選擇條件 48
2-5-4 高濃度電解液的結構 51
2-5-5 高濃度電解液的物化性質 54
2-5-6 使用高濃度電解液之優缺點 56
第三章 實驗方法與步驟 58
3-1 實驗藥品與器材 58
3-1-1 實驗藥品 58
3-1-2 實驗器材 59
3-2 實驗步驟 60
3-2-1 熱解法製備源自生物質的硬碳負極材料 60
3-2-2 製備不同有機電解液於室溫下測試 61
3-2-3 製備不同濃度的電解液於室溫下測試 61
3-3 碳材之準備 62
3-3-1 硬碳 62
3-4 材料特性分析 62
3-4-1 碳材微結構分析 62
3-4-2 碳材結晶特性分析 63
3-4-3 缺陷結構鑑定 63
3-4-4 碳材官能基鑑定 63
3-5 製備鈕扣型電池 64
3-5-1 製備電極 64
3-5-2 鈕扣型電池封裝 65
3-6 電化學性質測試 65
3-6-1 循環伏安法(Cyclic Voltammetry,CV) 65
3-6-2 計時電位法(Chronopotentimetry,CP) 66
3-6-3 交流阻抗(Electrochemical Impedance Spectroscopy,EIS) 66
3-6-4 壽命測試(Cycle Life Test) 66
第四章 結果與討論 67
4-1 源自生物質之硬碳負極可行性 67
4-1-1 表面形貌觀察 67
4-1-2 材料結構分析 72
4-1-3 缺陷鑑定 74
4-1-4 電化學性質 75
4-2 不同生物質前驅物對電化學性質之影響 89
4-2-1 表面形貌觀察 89
4-2-2 材料結構分析 92
4-2-3 缺陷鑑定 94
4-2-4 官能基鑑定 95
4-2-5 比表面積量測 98
4-2-6 電化學性質 98
4-3 高濃度電解液對電性表現分析 111
4-3-1 表面形貌觀察 111
4-3-2 材料結構分析 112
4-3-3 傳統有機電解液之電化學性質 113
4-3-4 拉曼光譜分析 117
4-3-5 物理性質分析 118
4-3-6 燃燒性測試 120
4-3-7 電化學性質 121
第五章 結論 134
參考文獻 135
附錄 145
參考文獻 1. Ge, et al., Electrochemical Intercalation of Sodium in Graphite. Solid State Ionics, 1988. 28: P. 1172-1175.
2. Doeff, et al., Electrochemical Insertion of Sodium into Carbon. Journal of the Electrochemical Society, 1993. 140(12): P. L169-L170.
3. Pan, et al., Room-temperature Stationary Sodium-ion Batteries for Large-scale Electric Energy Storage. Energy & Environmental Science, 2013. 6(8): P. 2338-2360.
4. Slater, et al., Sodium‐ion Batteries. Advanced Functional Materials, 2013. 23(8): P. 947-958.
5. Asher, et al., A Lamellar Compound of Sodium and Graphite. Journal of Inorganic and Nuclear Chemistry, 1959. 10(3-4): P. 238-249.
6. Mochida, et al., Anodic Performance and Insertion Mechanism of Hard Carbons Prepared from Synthetic Isotropic Pitches. Carbon, 2001. 39(3): P. 399-410.
7. Yao, et al., Carbon Based Anode Materials for Lithium-ion Batteries. 2003.
8. Alcantara, et al., Characterisation of Mesocarbon Microbeads (MCMB) as Active Electrode Material in Lithium and Sodium Cells. Carbon, 2000. 38(7): P. 1031-1041.
9. Stevens, et al., High Capacity Anode Materials for Rechargeable Sodium‐ion Batteries. Journal of the Electrochemical Society, 2000. 147(4): P. 1271-1273.
10. Stevens, et al., An in Situ Small‐angle X‐ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell. Journal of the Electrochemical Society, 2000. 147(12): P. 4428-4431.
11. Komaba, et al., Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐carbon Electrodes and Application to Na‐ion Batteries. Advanced Functional Materials, 2011. 21(20): P. 3859-3867.
12. Tang, et al., Hollow Carbon Nanospheres with Superior Rate Capability for Sodium‐based Batteries. Advanced Energy Materials, 2012. 2(7): P. 873-877.
13. Cao, et al., Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications. Nano Letters, 2012. 12(7): P. 3783-3787.
14. Gotoh, et al., NMR Study for Electrochemically Inserted Na in Hard Carbon Electrode of Sodium Ion Battery. Journal of Power Sources, 2013. 225: P. 137-140.
15. Prabakar, et al., Nanoporous Hard Carbon Anodes for Improved Electrochemical Performance in Sodium Ion Batteries. Electrochimica Acta, 2015. 161: P. 23-31.
16. Li, et al., Amorphous Monodispersed Hard Carbon Micro-spherules Derived from Biomass as a High Performance Negative Electrode Material for Sodium-ion Batteries. Journal of Materials Chemistry A, 2015. 3(1): P. 71-77.
17. Bommier, et al., Predicting Capacity of Hard Carbon Anodes in Sodium-ion Batteries Using Porosity Measurements. Carbon, 2014. 76: P. 165-174.
18. Li, et al., Preparation of Nitrogen-and Phosphorous Co-doped Carbon Microspheres and their Superior Performance as Anode in Sodium-ion Batteries. Carbon, 2016. 99: P. 556-563.
19. Wu, et al., Apple‐biowaste‐derived Hard Carbon as a Powerful Anode Material for Na‐ion Batteries. Chemelectrochem, 2016. 3(2): P. 292-298.
20. Lotfabad, et al., High-density Sodium and Lithium Ion Battery Anodes from Banana Peels. Acs Nano, 2014. 8(7): P. 7115-7129.
21. Lotfabad, et al., Origin of Non-SEI Related Coulombic Efficiency Loss in Carbons Tested against Na and Li. Journal of Materials Chemistry A, 2014. 2(46): P. 19685-19695.
22. Hong, et al., Biomass Derived Hard Carbon Used as a High Performance Anode Material for Sodium Ion Batteries. Journal of Materials Chemistry A, 2014. 2(32): P. 12733-12738.
23. Sun, et al., Facile Synthesis of High Performance Hard Carbon Anode Materials for Sodium Ion Batteries. Journal of Materials Chemistry A, 2015. 3(41): P. 20560-20566.
24. Wang, et al., Biomass Derived Hierarchical Porous Carbons as High-performance Anodes for Sodium-ion Batteries. Electrochimica Acta, 2016. 188: P. 103-110.
25. Luo, et al., Carbon Nanofibers Derived from Cellulose Nanofibers as a Long-life Anode Material for Rechargeable Sodium-ion Batteries. Journal of Materials Chemistry A, 2013. 1(36): P. 10662-10666.
26. Shen, et al., Chemically Crushed Wood Cellulose Fiber towards High-performance Sodium-ion Batteries. ACS Applied Materials & Interfaces, 2015. 7(41): P. 23291-23296.
27. Simone, et al., Hard Carbon Derived from Cellulose as Anode for Sodium Ion Batteries: Dependence of Electrochemical Properties on Structure. Journal of Energy Chemistry, 2016. 25(5): P. 761-768.
28. Jin, et al., Lignin-based Electrospun Carbon Nanofibrous Webs as Free-standing and Binder-free Electrodes for Sodium Ion Batteries. Journal of Power Sources, 2014. 272: P. 800-807.
29. Li, et al., A Superior Low-cost Amorphous Carbon Anode Made from Pitch and Lignin for Sodium-ion Batteries. Journal of Materials Chemistry A, 2016. 4(1): P. 96-104.
30. Yan, et al., Nitrogen-doped Carbon Microspheres Derived from Oatmeal as High Capacity and Superior Long Life Anode Material for Sodium Ion Battery. Electrochimica Acta, 2016. 191: P. 385-391.
31. Meng, et al., Trash to Treasure: From Harmful Algal Blooms to High-performance Electrodes for Sodium-ion Batteries. Environmental Science & Technology, 2015. 49(20): P. 12543-12550.
32. Pagani, et al., Forecasting Sugarcane Yields Using Agro-climatic Indicators and Canegro Model: A Case Study in the Main Production Region in Brazil. Agricultural Systems, 2017. 154: P. 45-52.
33. Dou, et al., Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for Sodium‐ion Batteries. Chemsuschem, 2017.
34. Ou, et al., Nitrogen-doped Porous Carbon Derived from Horn as an Advanced Anode Material for Sodium Ion Batteries. Microporous and Mesoporous Materials, 2017. 237: P. 23-30.
35. Dahbi, et al., Synthesis of Hard Carbon from Argan Shells for Na-ion Batteries. Journal of Materials Chemistry A, 2017.
36. Hao, et al., Rich Sulfur Doped Porous Carbon Materials Derived from Ginkgo Leaves for Multiple Electrochemical Energy Storage Devices. Journal of Materials Chemistry A, 2017. 5(5): P. 2204-2214.
37. Wang, et al., Kelp-derived Hard Carbons as Advanced Anode Materials for Sodium-ion Batteries. Journal of Materials Chemistry A, 2017. 5(12): P. 5761-5769.
38. Zhang, et al., Antimony/Porous Biomass Carbon Nanocomposites as High‐capacity Anode Materials for Sodium‐ion Batteries. Chemistry–an Asian Journal, 2017. 12(1): P. 116-121.
39. Wang, et al., Superior Sodium Storage in 3D Interconnected Nitrogen and Oxygen Dual‐doped Carbon Network. Small, 2016. 12(19): P. 2559-2566.
40. Zheng, et al., Micro-nano Structure Hard Carbon as a High Performance Anode Material for Sodium-ion Batteries. Scientific Reports, 2016. 6.
41. Zheng, et al., Enhanced Performance by Enlarged Nano-pores of Holly Leaf-derived Lamellar Carbon for Sodium-ion Battery Anode. Scientific Reports, 2016. 6.
42. Zhang, et al., Lithium and Sodium Storage in Highly Ordered Mesoporous Nitrogen-doped Carbons Derived from Honey. Journal of Power Sources, 2016. 335: P. 20-30.
43. Liu, et al., A Waste Biomass Derived Hard Carbon as a High-performance Anode Material for Sodium-ion Batteries. Journal of Materials Chemistry A, 2016. 4(34): P. 13046-13052.
44. Zhu, et al., Hard Carbon Fibers Pyrolyzed from Wool as High-performance Anode for Sodium-ion Batteries. JOM, 2016. 68(10): P. 2579-2584.
45. Selvamani, et al., Garlic Peel Derived High Capacity Hierarchical N-doped Porous Carbon Anode for Sodium/Lithium Ion Cell. Electrochimica Acta, 2016. 190: P. 337-345.
46. Li, et al., Hard Carbon Microtubes Made from Renewable Cotton as High‐performance Anode Material for Sodium‐ion Batteries. Advanced Energy Materials, 2016. 6(18).
47. Zhang, et al., High Temperature Carbonized Grass as a High Performance Sodium Ion Battery Anode. ACS Applied Materials & Interfaces, 2016. 9(1): P. 391-397.
48. Wang, et al., Fluorine-doped Carbon Particles Derived from Lotus Petioles as High-performance Anode Materials for Sodium-ion Batteries. The Journal of Physical Chemistry C, 2015. 119(37): P. 21336-21344.
49. Lv, et al., Carbonaceous Photonic Crystals as Ultralong Cycling Anodes for Lithium and Sodium Batteries. Journal of Materials Chemistry A, 2015. 3(26): P. 13786-13793.
50. Lv, et al., Peanut Shell Derived Hard Carbon as Ultralong Cycling Anodes for Lithium and Sodium Batteries. Electrochimica Acta, 2015. 176: P. 533-541.
51. Yun, et al., Sodium‐ion Storage in Pyroprotein‐based Carbon Nanoplates. Advanced Materials, 2015. 27(43): P. 6914-6921.
52. Li, et al., Recycling Chicken Eggshell Membranes for High-capacity Sodium Battery Anodes. Rsc Advances, 2014. 4(92): P. 50950-50954.
53. Ding, et al., Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes. ACS Nano, 2013. 7(12): P. 11004-11015.
54. Emaga, et al., Dietary Fibre Components and Pectin Chemical Features of Peels during Ripening in Banana and Plantain Varieties. Bioresource Technology, 2008. 99(10): P. 4346-4354.
55. Dahn, et al., Mechanisms for Lithium Insertion in Carbonaceous Materials. Science, 1995. 270(5236): P. 590.
56. Wandee, et al., Enrichment of Rice Noodles with Fibre‐rich Fractions Derived from Cassava Pulp and Pomelo Peel. International Journal of Food Science & Technology, 2014. 49(11): P. 2348-2355.
57. Demirbas, et al., Combustion Characteristics of Different Biomass Fuels. Progress in Energy and Combustion Science, 2004. 30(2): P. 219-230.
58. Jin, et al., Electrochemical Performance of Electrospun Carbon Nanofibers as Free-standing and Binder-free Anodes for Sodium-ion and Lithium-ion Batteries. Electrochimica Acta, 2014. 141: P. 302-310.
59. Górka, et al., Recent Progress in Design of Biomass-derived Hard Carbons for Sodium Ion Batteries. C, 2016. 2(4): P. 24.
60. Irisarri, et al., Review—Hard Carbon Negative Electrode Materials for Sodium-ion Batteries. Journal of the Electrochemical Society, 2015. 162(14): P. A2476-A2482.
61. Gibaud, et al., A Small Angle X-ray Scattering Study of Carbons Made from Pyrolyzed Sugar. Carbon, 1996. 34(4): P. 499-503.
62. Liu, et al., Mechanism of Lithium Insertion in Hard Carbons Prepared by Pyrolysis of Epoxy Resins. Carbon, 1996. 34(2): P. 193-200.
63. Xing, et al., Optimizing Pyrolysis of Sugar Carbons for Use as Anode Materials in Lithium‐ion Batteries. Journal of the Electrochemical Society, 1996. 143(10): P. 3046-3052.
64. Buiel, et al., Model of Micropore Closure in Hard Carbon Prepared from Sucrose. Carbon, 1999. 37(9): P. 1399-1407.
65. Berger, et al., Insertion of Sodium and Potassium in Some Hard Carbons. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1970. 271(14): P. 837-&.
66. Ponrouch, et al., High Capacity Hard Carbon Anodes for Sodium Ion Batteries in Additive Free Electrolyte. Electrochemistry Communications, 2013. 27: P. 85-88.
67. Ponrouch, et al., In Search of an Optimized Electrolyte for Na-ion Batteries. Energy & Environmental Science, 2012. 5(9): P. 8572-8583.
68. Fong, et al., Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of the Electrochemical Society, 1990. 137(7): P. 2009-2013.
69. Aurbach, et al., Recent Studies on the Correlation between Surface Chemistry, Morphology, Three-dimensional Structures and Performance of Li and Li-C Intercalation Anodes in Several Important Electrolyte Systems. Journal of Power Sources, 1997. 68(1): P. 91-98.
70. Yamada, et al., Review—Superconcentrated Electrolytes for Lithium Batteries. Journal of the Electrochemical Society, 2015. 162(14): P. A2406-A2423.
71. Xu, et al., Nonaqueous Liquid Electrolytes for Lithium-based Rechargeable Batteries. Chemical Reviews, 2004. 104(10): P. 4303-4418.
72. Kanamura, et al., Electrochemical Oxidation of Propylene Carbonate (Containing Various Salts) on Aluminium Electrodes. Journal of Power Sources, 1995. 57(1-2): P. 119-123.
73. Wang, et al., Inhibition of Anodic Corrosion of Aluminum Cathode Current Collector on Recharging in Lithium Imide Electrolytes. Electrochimica Acta, 2000. 45(17): P. 2677-2684.
74. Ding, et al., Na [FSA]-[C 3 C 1 Pyrr][FSA] Ionic Liquids as Electrolytes for Sodium Secondary Batteries: Effects of Na Ion Concentration and Operation Temperature. Journal of Power Sources, 2014. 269: P. 124-128.
75. Guo, et al., High-performance Sodium Batteries with the 9, 10-Anthraquinone/CMK-3 Cathode and an Ether-based Electrolyte. Chemical Communications, 2015. 51(50): P. 10244-10247.
76. Chen, et al., Ionic Liquid Electrolytes with High Sodium Ion Fraction for High-rate and Long-life Sodium Secondary Batteries. Journal of Power Sources, 2016. 332: P. 51-59.
77. Lee, et al., Ultraconcentrated Sodium Bis (Fluorosulfonyl) Imide-based Electrolytes for High-performance Sodium Metal Batteries. ACS Applied Materials & Interfaces, 2017. 9(4): P. 3723-3732.
78. Mckinnon, et al., How to Reduce the Cointercalation of Propylene Carbonate in Li X Zrs2 and Other Layered Compounds. Journal of the Electrochemical Society, 1985. 132(2): P. 364-366.
79. Jeong, et al., Electrochemical Intercalation of Lithium Ion within Graphite from Propylene Carbonate Solutions. Electrochemical and Solid-State Letters, 2003. 6(1): P. A13-A15.
80. Jeong, et al., Interfacial Reactions between Graphite Electrodes and Propylene Carbonate-based Solutions: Electrolyte-concentration Dependence of Electrochemical Lithium Intercalation Reaction. Journal of Power Sources, 2008. 175(1): P. 540-546.
81. Yamada, et al., Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-based Electrolytes: Effect of Solvation Structure of Lithium Ion. The Journal of Physical Chemistry C, 2010. 114(26): P. 11680-11685.
82. Yamada, et al., A Superconcentrated Ether Electrolyte for Fast-charging Li-ion Batteries. Chemical Communications, 2013. 49(95): P. 11194-11196.
83. Yamada, et al., Unusual Stability of Acetonitrile-based Superconcentrated Electrolytes for Fast-charging Lithium-ion Batteries. Journal of the American Chemical Society, 2014. 136(13): P. 5039-5046.
84. Yamada, et al., General Observation of Lithium Intercalation into Graphite in Ethylene-carbonate-free Superconcentrated Electrolytes. ACS Applied Materials & Interfaces, 2014. 6(14): P. 10892-10899.
85. Nie, et al., Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF6 in Propylene Carbonate. The Journal of Physical Chemistry C, 2013. 117(48): P. 25381-25389.
86. Liu, et al., In Situ Observation of Electrolyte-concentration-dependent Solid Electrolyte Interphase on Graphite in Dimethyl Sulfoxide. ACS Applied Materials & Interfaces, 2015. 7(18): P. 9573-9580.
87. Petibon, et al., The Use of Ethyl Acetate as a Sole Solvent in Highly Concentrated Electrolyte for Li-ion Batteries. Electrochimica Acta, 2015. 154: P. 287-293.
88. Moon, et al., Mechanism of Li Ion Desolvation at the Interface of Graphite Electrode and Glyme–Li Salt Solvate Ionic Liquids. The Journal of Physical Chemistry C, 2014. 118(35): P. 20246-20256.
89. Moon, et al., Solvent Activity in Electrolyte Solutions Controls Electrochemical Reactions in Li-ion and Li-sulfur Batteries. The Journal of Physical Chemistry C, 2015. 119(8): P. 3957-3970.
90. Aurbach, et al., A Short Review of Failure Mechanisms of Lithium Metal and Lithiated Graphite Anodes in Liquid Electrolyte Solutions. Solid State Ionics, 2002. 148(3): P. 405-416.
91. Jeong, et al., Suppression of Dendritic Lithium Formation by Using Concentrated Electrolyte Solutions. Electrochemistry Communications, 2008. 10(4): P. 635-638.
92. Suo, et al., A New Class of Solvent-in-salt Electrolyte for High-energy Rechargeable Metallic Lithium Batteries. Nature Communications, 2013. 4: P. 1481.
93. Qian, et al., High Rate and Stable Cycling of Lithium Metal Anode. Nature Communications, 2015. 6.
94. Brouillette, et al., Stable Solvates in Solution of Lithium Bis (Trifluoromethylsulfone) Imide in Glymes and Other Aprotic Solvents: Phase Diagrams, Crystallography and Raman Spectroscopy. Physical Chemistry Chemical Physics, 2002. 4(24): P. 6063-6071.
95. Henderson, et al., Glyme− Lithium Bis (Trifluoromethanesulfonyl) Imide and Glyme− Lithium Bis (Perfluoroethanesulfonyl) Imide Phase Behavior and Solvate Structures. Chemistry of Materials, 2005. 17(9): P. 2284-2289.
96. Henderson, et al., Glyme− Lithium Salt Phase Behavior. The Journal of Physical Chemistry B, 2006. 110(26): P. 13177-13183.
97. Seo, et al., Electrolyte Solvation and Ionic Association. Journal of the Electrochemical Society, 2012. 159(5): P. A553-A565.
98. Seo, et al., Electrolyte Solvation and Ionic Association II. Acetonitrile-lithium Salt Mixtures: Highly Dissociated Salts. Journal of the Electrochemical Society, 2012. 159(9): P. A1489-A1500.
99. Han, et al., Electrolyte Solvation and Ionic Association IV. Acetonitrile-lithium difluoro (oxalato) borate (LiDFOB) Mixtures. Journal of the Electrochemical Society, 2013. 160(11): P. A2100-A2110.
100. Han, et al., Electrolyte Solvation and Ionic Association V. Acetonitrile-Lithium Bis (Fluorosulfonyl) Imide (LiFSI) Mixtures. Journal of the Electrochemical Society, 2014. 161(14): P. A2042-A2053.
101. Borodin, et al., Electrolyte Solvation and Ionic Association VI. Acetonitrile-Lithium Salt Mixtures: Highly Associated Salts Revisited. Journal of the Electrochemical Society, 2015. 162(4): P. A501-A510.
102. Hyodo, et al., Raman Intensity Study of Local Structure in Non-aqueous Electrolyte Solutions—I. Cation-solvent Interaction in LiClO4/Ethylene Carbonate. Electrochimica Acta, 1989. 34(11): P. 1551-1556.
103. Kunz, et al., Lithium Bromide in Acetonitrile: Thermodynamics, Theory, and Simulation. Journal of Solution Chemistry, 1991. 20(9): P. 875-891.
104. Seo, et al., Li+ Cation Coordination by Acetonitrile—Insights from Crystallography. RSC Advances, 2012. 2(21): P. 8014-8019.
105. Mcowen, et al., Concentrated Electrolytes: Decrypting Electrolyte Properties and Reassessing Al Corrosion Mechanisms. Energy & Environmental Science, 2014. 7(1): P. 416-426.
106. Ueno, et al., Li+ Solvation in Glyme–Li Salt Solvate Ionic Liquids. Physical Chemistry Chemical Physics, 2015. 17(12): P. 8248-8257.
107. Sodeyama, et al., Sacrificial Anion Reduction Mechanism for Electrochemical Stability Improvement in Highly Concentrated Li-salt Electrolyte. The Journal of Physical Chemistry C, 2014. 118(26): P. 14091-14097.
108. Röschenthaler, et al., A Stable Tetraalkoxy (Hydroxy) Phosphorane and Phosphorane Oxide Anion by Hydrolysis of Tetraalkoxy (Halogen) Phosphoranes. Angewandte Chemie International Edition in English, 1982. 21(3): P. 208-208.
109. Seo, et al., Electrolyte Solvation and Ionic Association III. Acetonitrile-Lithium Salt Mixtures–Transport Properties. Journal of the Electrochemical Society, 2013. 160(8): P. A1061-A1070.
110. Johansson, et al., Electronic Structure Calculations on Lithium Battery Electrolyte Salts. Physical Chemistry Chemical Physics, 2007. 9(12): P. 1493-1498.
111. Pappenfus, et al., Complexes of Lithium Imide Salts with Tetraglyme and their Polyelectrolyte Composite Materials. Journal of the Electrochemical Society, 2004. 151(2): P. A209-A215.
112. Yoshida, et al., Oxidative-stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes. Journal of the American Chemical Society, 2011. 133(33): P. 13121-13129.
113. Matsumoto, et al., Suppression of Aluminum Corrosion by Using High Concentration LiTFSI Electrolyte. Journal of Power Sources, 2013. 231: P. 234-238.
114. Yoshida, et al., Change from Glyme Solutions to Quasi-Ionic Liquids for Binary Mixtures Consisting of Lithium Bis (Trifluoromethanesulfonyl) Amide and Glymes. The Journal of Physical Chemistry C, 2011. 115(37): P. 18384-18394.
115. Dokko, et al., Solvate Ionic Liquid Electrolyte for Li–S Batteries. Journal of the Electrochemical Society, 2013. 160(8): P. A1304-A1310.
116. Stevens, et al., The Mechanisms of Lithium and Sodium Insertion in Carbon Materials. Journal of the Electrochemical Society, 2001. 148(8): P. A803-A811.
117. Zhang, et al., Correlation between Microstructure and Na Storage Behavior in Hard Carbon. Advanced Energy Materials, 2016. 6(1).
118. Bommier, et al., New Mechanistic Insights on Na-ion Storage in Nongraphitizable Carbon. Nano Letters, 2015. 15(9): P. 5888-5892.
119. Vogt, et al., Understanding the Interaction of the Carbonates and Binder in Na-ion Batteries: A Combined Bulk and Surface Study. Chemistry of Materials, 2015. 27(4): P. 1210-1216.
120. Gibson, et al., The Hierarchical Structure and Mechanics of Plant Materials. Journal of the Royal Society Interface, 2012: P. Rsif20120341.
121. Pandey, et al., Biotechnological Potential of Agro-industrial Residues. I: Sugarcane Bagasse. Bioresource Technology, 2000. 74(1): P. 69-80.
122. Hoareau, et al., Sugar Cane Bagasse and Curaua Lignins Oxidized by Chlorine Dioxide and Reacted with Furfuryl Alcohol: Characterization and Stability. Polymer Degradation and Stability, 2004. 86(3): P. 567-576.
123. Bakandritsos, et al., High Surface Area Montmorillonite− Carbon Composites and Derived Carbons. Chemistry of Materials, 2004. 16(8): P. 1551-1559.
指導教授 張仍奎(Jeng-Kuei Chang) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明