博碩士論文 104329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.17.77.61
姓名 施芊妘(Chien-Yun Shih)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 探討以旋轉塗佈製程形成之硼矽合金層的生成現象及其對雙面矽晶太陽能電池之影響
(Study of formation of boron-rich layers using boron spin-on-dopant diffusion process and its impact on bifacial silicon solar cells)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在不同硼擴散源擴散過程中,經常會生成硼矽合金層(Boron rich layer, BRL)在硼矽玻璃(Borosilicate glass, BSG)與射極之間,其具有良好的去疵效應(Gettering effect),但對於太陽能電池元件來說,BRL會造成嚴重複合使得反向飽和電流密度增加,且其存在會導致接觸電阻上升,因此會透過低溫氧化或是蝕刻的方式去除。
本研究利用旋轉塗佈之擴散源擴散形成N型雙面受光型太陽能電池之射極,觀察以不同濃度之擴散源形成的BRL情形,藉以探討其生成現象,並使用低溫氧化方式去除BRL,去除後反向飽和電流密度(Inverse saturation current density)由1.2x10-11 A/cm2降至4.5x10-13 A/cm2,接觸電阻(Contact resistivity)則從11.06 mΩ-cm2降至3.97 mΩ-cm2。
為了探討不同BRL厚度的變化會如何反應在太陽能電池元件,我們將不同氧化條件製作成雙面受光型太陽能電池,發現隨著BRL變薄,內部量子效率光譜響應圖中短波長的部份有明顯的提升,而在太陽能電池電性部份,隨著氧化時間的增長,短路電流密度(Jsc)提升4.2 mA/cm2;填充因子(FF)提升6.9%;轉換效率(η)則提升了1.7%。
摘要(英) Most current B diffusion processes used to fabricate n-type solar cell result in the formation of BRL which is located between the borosilicate glass (BSG) and emitter region. The formation of BRL is effective at gettering, but it’s harmful to silicon solar cell performance. The recombination centers in the BRL cause saturation current density degradation, and as the thickness of BRL increases, the contact resistance value increases. Low temperature oxidation and chemical etching are often used to remove the BRL.
In this work, we used boron acid as spin-on dopants to form the emitter of n-type bifacial silicon solar cells. We observed the formation of BRL by different concentration boron acid and investigated the influence of removal of the BRL by low temperature oxidation on inverse saturation current density and contact resistivity. We obtained that removing the BRL reduce inverse saturation current density from 1.2x10-11 A/cm2 to 4.5x10-13 A/cm2. In addition, the contact resistance value decreases from 11.06 mΩ-cm2 to 3.97 mΩ-cm2.
In order to explore the effects of gradual removal of the BRL in the finished cell, we applied different oxidation conditions to bifacial solar cell. We observed that when the thickness of the BRL decreases, the IQE response increases in the short wavelength. As for the cell performance, it shown that the optimum oxidation condition raised the saturation current density by 4.2 mA/cm2; fill factor by 6.9%; the cell efficiency by 1.7%.
關鍵字(中) ★ 旋轉塗佈摻雜
★ 硼矽合金層
★ 雙面受光型太陽能電池
關鍵字(英) ★ Spin-on dopants
★ Boron rich layer
★ N-type bifacial silicon solar cells
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1前言 1
1-2 研究背景 3
第二章 文獻回顧 6
2-1太陽能電池的分類 6
2-1-1太陽能電池的世代 6
2-1-2 矽基太陽能電池分類 7
2-1-3 矽晶太陽能電池結構 7
2-2 太陽能電池基礎物理 11
2-2-1 太陽能電池運作機制 11
2-2-2 太陽能電池基礎參數 12
2-3 複合理論 18
2-4旋轉塗佈製程理論與回顧 21
2-4-1 固態擴散理論 21
2-4-2 去疵效應 23
2-4-2-1 磷擴散的表面去疵效應 23
2-4-2-2 硼擴散的表面去疵效應 25
2-4-3 旋轉塗佈擴散製程文獻回顧 26
2-4-4 Boron Rich Layer(BRL)文獻回顧 27
第三章 研究方法 30
3-1 研究動機 30
3-2 實驗流程 30
3-3 基板粗糙化 31
3-4 擴散源溶液製備 32
3-5 X光光電子能譜儀分析 32
3-6 少數載子生命週期分析 33
3-7 雙面受光型太陽能電池開發 35
3-8 儀器分析 37
第四章 結果探討 39
4-1 SOD摻雜源之BRL生成現象 39
4-1-1 BRL生成現象 39
4-1-2 不同溫度及擴散源濃度的BRL厚度分析 41
4-1-3 不同擴散源濃度對去疵效果分析 45
4-2 BRL之氧化條件分析 47
4-2-1不同氧化時間之去疵效果分析 47
4-2-2氧化前後之反向飽和電流密度分析 49
4-2-3 氧化前後之接觸電阻分析 50
4-3去除BRL之太陽能電池元件比較 51
第五章 結論 54
參考文獻 55
參考文獻 [1] http://www.climatewarmingcentral.com/science_page.html
[2] http://www.zmescience.com/ecology/climate/how-much-renewable-energy/
[3] https://cleantechnica.com/2016/02/12/is-this-the-best-solar-chart-yet/
[4] http://solarpanelsforyourhomes.com/
[5] D. M. Chapin, C. S. Fuller, G. L. Pearson, Journal of Applied Physics, 25, 676 (1954)
[6] Y. S. Tyan, E. A. Perez-Alburne, Conference: 16. IEEE photovoltaics specialists conference, San Diego, CA, USA, 28 Sep, (1982)
[7] Z. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov, V. G. Trofim, Sov. Phys. Semicond., 4, 2047 (1971)
[8] P. Rappaport, Solar Energy, 3, issue 4, 8 (1959)
[9] Bloomberg, New Energy Finance & EnergyTrend.com
[10] G. Stokkan, S. Riepe, O. Lohne, W. Warta, Journal of Applied Physics, 101, 053515 (2007)
[11] Fraunhofer Institute for Solar Energy Systems, ISE (2016)
[12] J. Schmidt, K. Bothe, R. Bock, C. Schmiga, R. Krain, R. Brendel, 22nd European Photovoltaic Solar Energy Conference, 3-7 (2007)
[13] https://www.quora.com/What-is-the-best-technology-for-setting-up-a-1mw-solar-panel-electricity-production-unit-in-terms-of-cost-yield-maintenance-and-area-required
[14] PV News, Paul Maycock, 1997.
[15] European Photovoltaic Industry Association (2010)
[16] European Photovoltaic Industry Association (2014)
[17] http://www.solarchoice.net.au/blog/news/quiet-innovations-keeping-screen-printed-solar-cells-on-top-080215
[18] Park S, Bae S, Kim H, Kim S, Do Kim Y, Park H, Kim S, Tark SJ, Son CS, Kim D, Current Applied Physics, 12, 17-22 (2012)
[19] J. Zhao, A. Wang, M.A. Green, Technical digest of the 11th International Photovoltaic Science and Engineering Conference, 65, 429-435 (2001)
[20] S. Gatz, K. Bothe, J. Muel?ler, T. Dull?we?ber, and R. Bren?del, Energy Pro?ce?dia, 8, 318–323 (2011)
[21] A.U. Rehman, S.H. Lee, Materials, 7, 1318-1341 (2014)
[22] http://www.panasonic.com/global/home.html
[23] A.U. Rehman, S.H. Lee, The Scientific World Journal, 2013, 470437 (2013)
[24] http://www.pv-tech.org/solar-media-store-shutdown
[25] http://old.hssyxx.com/zhsj/kexue-2/co6-2/6-21/206.html
[26] S. O. Kasap, Optoelectronics and Photonics Principles and Practices, Prentice -Hall, ed. 1.0 (2001)
[27] H. Hoppe, N. S. Sariciftci, Organic solar cells, Journal of materials research, 19, 1924-1945 (2004).
[28] B. Fischer, PhD Thesis, University of Konstanz (2003)
[29] Schimpe, R., AEU - International Journal of Electronics and Communications, 46, 80-85 (1992)
[30] M. wolf, H. Rauschenbach, Advanced energy conversion, 3, 455-479 (1963)
[31] A. B. Sproul, M. A. Green, and A. W. Stephens, J. Appl. Phys., 72, 4161-4171 (1992)
[32] http://pveducation.org/pvcdrom/solar-cell-operation/quantum-efficiency
[33] W. Shockley and W. Read, Physical Review, 87, 835–842 (1952)
[34] Arnab Das, PhD dissertation, Atlanta, Georgia, Georgia: Institute of Technology, School of Electrical and Computer Engineering (2012)
[35] A. G. Aberle, University of New South Wales, Sydney NSW 2052 (1999)
[36] J. P. Colinge and C. A. Colinge, Physics of semiconductor devices, Kluwer academic publishers (2002)
[37] S. M. Sze, and K. K. Ng, Physics of semiconductor devices, John Wiley & Sons, Inc., Hoboken, NJ, USA. (2006)
[38] Choi, S.J., et al., Renewable Energy, 54, 96-100 (2013)
[39] A. B. Sproul, M. A. Green, and A. W. Stephens, J. Appl. Phys., 72, 4161-4171 (1992)
[40] M. S. Tyagi and R. V. Overstraeten, Solid-St. Electron., 26, 577-597 (1983)
[41] M. J. Kerr and A. Cuevas, J. Appl. Phys., 91, 97-104 (2002)
[42] W. Shockley and W. Read, Phys. Rev., 87, 835-842 (1952)
[43] I. Martin, a M. Vetter, M. Garin, A. Orpella, C. Voz, J. Puigdollers, and R. Alcubilla et al., Journal of Applied Physics, 98, 114912-114921 (2005)
[44] M. Kerr and A. Cuevas, Journal of Applied Physics, 91, 2473-2481 (2002)
[45] S. Dauwe, PhD Thesis, University of Hannover (2004)
[46] Kang, J. S., and D. K. Schroder, Journal of Applied Physics, 65, 2974-2985 (1989)
[47] Macdonald, Daniel, Conference Record of the Twenty-Ninth IEEE, 285-288 (2002)
[48] Das, Arnab, Georgia Institute of Technology (2012)
[49] Ohe, N., Tsutsui, K., Warabisako, T., & Saitoh, T., Solar energy materials and solar cells, 48(1-4), 145-150 (1997)
[50] Cousins, Peter J., and Jeffrey E. Cotter., IEEE Transactions on Electron Devices, 53.3, 457-464 (2006)
[51] Phang, Sieu Pheng, Wensheng Liang, Bettina Wolpensinger and Michael Andreas Kessler, IEEE Journal of Photovoltaics, 3.1, 261-266 (2013)
[52] Phang, S. P., and D. Macdonald, Journal of Applied Physics, 109.7, 073521 (2011)
[53] Ryu, Kyung Sun, Georgia Institute of Technology (2015)
[54] D. M. Brown* and P. R. Kennicott, J. Electrochem. Soc., 118(2), 293-300 (1971)
[55] E. Arai, H. Nakamura, and Y. Terunuma, J. Electrochem. Soc.: Solid State Sci. Technol.
120, 980–7 (1973)
[56] T. L. Aselage, J. Mater. Res., 13, 1786–94 (1998)
[57] Michael Andreas Kessler, Tobias Ohrdes, Bettina Wolpensinger and Nils-Peter Harder, Semiconductor Science and Technology, 25, 055001 (2010)
[58] Bandana Singha and Chetan Singh Solanki, Semiconductor Science and Technology, 31, 035009 (2016)
[59] Bandana Singha and Chetan Singh Solanki, Materials Science in Semiconductor Processing, 57, 83–89 (2017)
[60] G. L. Vick and K. M. Whittle, J. Electrochem. Soc., 116, issue 8, 1142-1144 (1969)
[61] E. de Fresart, S. S. Rhee, and K. L. Wang, Appl. Phys. Lett., 49, 847 (1986)
[62] M. Furuhashi, T. Hirose, H. Tsuji, M. Tachi, and K. Taniguchi, Eur. Phys. J. Appl. Phys., 27, 163–166 (2004)
[63] S. A. McHugo, R. J. McDonald, A. R. Smith, and D. L. Hurley, Appl. Phys. Lett., 73, 1424 (1998)
[64] Takeshi TERAKAWA, Dong WANG and Hiroshi NAKASHIMA, Japanese Journal of Applied Physics, 45, No. 4A, 2643–2647 (2006)
[65] S.M. Myers, G.A. Petersen, T.J. Headley, J.R. Michael, T.L. Aselage and C.H. Seager, Nuclear Instruments and Methods in Physics Research, 127–128, 291-296 (1997)
[66] V. Vahanissi, A. Haarahiltunen, H. Talvitie, M. Yli-Koski, J. Lindroos, and H. Savin, Phys. Status Solidi RRL, 4, No. 5–6, 136–138 (2010)
[67] Cheolmin Park, Bonggi Kim, Nagarajan Balaji, Youn-Jung Lee, Minkyu Ju, Hoongjoo Lee, and Junsin Yi, Journal of Nanoscience and Nanotechnology, 16,4846-4850 (2016)
[68] Masahiro Susa and Kazuhiro Nagata, Material &Science and Engineering, A 146, 51-62 (1991)
[69] Bandana Singha1 and Chetan Singh Solanki, Mater. Res. Express, 5, 015907 (2018)
[70] Helmut Mackel and Kenneth Varner, Prog. Photovolt: Res. Appl., 21, 850–866 (2013)
[71] Kyungsun Ryu, Ajay Upadhyaya, Hyun-Jin Song, Chel-Jong Choi, Ajeet Rohatgi and Young-Woo O, Appl. Phys. Lett., 101, 073902 (2012)
[72] D. Macdonald, H. Mackel, and A. Cuevas, Appl. Phys. Lett., 88, 092105 (2006)
指導教授 陳一塵(I-Chen Chen) 審核日期 2018-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明