博碩士論文 104329008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.158.194.80
姓名 洪煜柔(Yu-Jou Hung)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 錫摻雜之高錳矽化物之製備與熱電性質分析
(Preparation and Analysis of Thermoelectric Properties of Sn-Doped High Manganese Silicide)
相關論文
★ 以超臨界流體製備金屬觸媒/奈米碳管複合材料並探討其添加對氫化鋁鋰放氫特性的影響★ 氫離子佈植對矽鍺/矽異質結構應變釋放之研究及矽鍺奈米線之製作
★ 利用原子力顯微鏡結合選擇性化學蝕刻法分析自組裝矽鍺量子點成分分佈之研究★ 利用新穎奈米遮罩製備低維度矽鍺奈米結構及其光電性質之研究
★ 利用奈米球微影術與金輔助化學蝕刻法形成矽鍺奈米柱陣列之研究★ 第三元素對於鎳矽化物形成於矽及矽碳基板之影響
★ 應用於太陽光電之自潔性及低反射率之矽與矽鍺奈米孔洞陣列★ 奈米結構化氧化鋁鋅薄膜之製作與光電性質研究
★ 鉑矽化物於矽碳磊晶層上生成行為及其熱穩定性之探討★ 離子佈植對鎳合金矽化物之影響
★ 以靜電紡絲技術製備二氧化鈦奈米纖維之研究★ 二氧化鈦基表面增強拉曼基板之製作與檢測
★ 自組裝複合式鍺量子點成長機制及其應用之研究★ 超薄鎳合金磊晶矽化物生成行為與熱穩定性研究
★ 以銀/二氧化鈦奈米複合結構提升染料敏化太陽能電池效率★ 鍺誘發二氧化鈦奈米線成長機制及其應用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-7-1以後開放)
摘要(中) 高錳矽化物(HMS)是極具潛力發展為中溫型發電之P型熱電材料。高錳矽化物為一種不匹配相(Incommensurate phase),目前發現的有四種高錳矽化物之相,分別為Mn4Si7、Mn11Si19、Mn15Si26與Mn27Si47,這四種相皆為螺旋階梯狀排列的晶體結構。
高錳矽化物之熱電性質通常會藉由摻雜或固溶其他元素改善。本研究採用錫摻雜至高錳矽化物中,使用電弧熔煉與火花電漿燒結的方式,製備多晶摻雜錫之高錳矽化物塊材,並且研究其相組成與微結構。我們選用的錫摻雜比例為0.1at%、0.5at%、1at%和1.5at%。之後對經火花電漿燒結的高錳矽化物塊材進行熱電性質量測,量測的溫度範圍介於323K~773K之間;發現在摻雜量為0.1at%的時候,會有最低的晶格導熱率,並且有最高的ZT值。
摘要(英)
Higher manganese silicide (HMS) is considered to be a promising p-type thermoelectric material for use in intermediate-temperature power generation. It is well known that HMS exist as several incommensurable phases such as Mn4Si7, Mn11Si19, Mn15Si26, Mn27Si47, and all of these compounds are Nowotny chimney phases exhibiting tetragonal crystal structure.

Thermoelectric performance is improved through compositional optimization by doping or substitution. In this work, we prepared polycrytstalline HMS with Sn additions by arc melting and subsequent spark plasma sintering (SPS). The phases, composition, and microstructures of the Sn-doped polycrystalline HMS bulk were investigated. In this study, we select doped-Sn ratio of 0.1at%, 0.5 at%, 1 at%, and 1.5at%. After SPS, we measured the thermoelectric properties of sintered bulk sample from 323K to 773K. We found that the thermal conductivity was significantly improved when the Sn was 0.1at%. The HMS with Sn has the best the ZT is 0.1at%.
關鍵字(中) ★ 高錳矽化物
★ 熱電性質
★ 錫
★ 不匹配相
關鍵字(英) ★ Higher manganese silicide
★ Thermoelectric properties
★ Tin
★ Incommensurate phase
論文目次
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章、緒論 1
1-1 前言 1
1-2 研究目的 2
第二章、文獻回顧 5
2-1 熱電效應概述 5
2-1-1 Seebeck 效應 6
2-1-2 Peltier 效應 7
2-1-3 Thomson 效應 8
2-2 導電率 9
2-3 熱傳導率 10
2-4 Wiedemann-Franz 定律 11
2-5 熱電優值 12
2-6 高錳矽化物(Higher manganese silicide)簡介 12
2-6-1 高錳矽化物晶體結構 13
2-6-2 高錳矽化物特性 14
2-7 高錳矽化物之熱電性質改良 15
第三章、實驗方法與實驗設備 21
3-1 高錳矽化物塊材製備 21
3-1-1 起始原料 21
3-1-2 電弧熔煉(Arc melting) 21
3-1-3 研磨與過篩 22
3-1-4 火花電漿燒結成型(Spark plasma sintering) 23
3-2 材料結構分析 24
3-2-1 X光繞射分析(XRD) 24
3-2-2 掃描式電子顯微鏡分析(SEM) 24
3-2-3 穿透式電子顯微鏡分析(TEM) 25
3-3 材料熱電性質分析 26
3-3-1 試片製備 26
3-3-2 席貝克係數與導電率量測 26
3-3-2-1 熱電性席貝克係數與半導體化合物材料導電率變溫量測系統(ZEM 3) 26
3-3-2-2 霍爾效應量測 27
3-3-3 熱傳導率量測 27
3-3-3-1 高溫示差掃描熱分析儀(DSC) 27
3-3-3-2 雷射閃光法熱傳導分析儀 (LFA) 28
3-3-3-3 阿基米德法(Archimedes method) 29
第四章、實驗結果與討論 34
4-1材料基本性質分析 34 4-1-1 XRD分析 34
4-1-2 SEM分析 35
4-1-3 TEM分析 36
4-2 熱電性質分析 37
4-2-1 導電率 37
4-2-2 Seebeck係數 39
4-2-3 導熱率 39
4-2-4 ZT值 40
第五章、結論 50
參考文獻 51
參考文獻
[1] Ssennoga Twaha, Jie Zhu, Yuying Yan, and Bo Li., “A comprehensive review of thermoelectric technology : materials, applications, modelling and performance improvement”, Renewable and sustainable energy reviews, 65, pp.698-726, 2016.

[2] Fitriani, R. Ovik, B.D. Long, M.C. Barma, M. Riaz, M.F.M. Sabri, S.M. Said, and R. Saidur, “A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery”, Renewable and sustainable energy reviews, 64, pp.635-659, 2016.

[3] Yim WM, and Rosi FD, “Compound tellurides and their alloys for Peltier cooling-a review”, Solid State Electron, 15, pp.1121-1140, 1972.

[4] Noda Y, Orihashi M, and Nishida IA, “Preparation and thermoelectric properties of Ag or K doped PbTe”, Mater Trans JIM , 39, pp.602-605, 1998.

[5] Harringa JL, and Cook BA. “Application of hot isostatic pressing for consolidation of n-type silicon-germanium alloys prepared by mechanical alloying”, Mater Sci Eng B, 60, pp. 137–142, 1999.

[6] I. Kawasumi, M. Sakata, I. Nishida, and K. Matsumoto, “Crystal growth of manganese silicide, MnSi1.73 and semiconducting properties of Mn15Si26”, Journal of materials science, 16, pp.355-366.1981.

[7] X.F. Zheng, C.X. Liu, Y.Y. Yan, and Q. Wang, “A review of thermoelectrics research – recent developments and potentials for sustainable and renewable energy applications”, Renewable and sustainable energy reviews, 32, pp.486-503, 2014.

[8] K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, “Observation of the spin Seebeck effect”, Nature, 455, pp.778-781, 2008.

[9] Terry M. Tritt, “Thermoelectric phenomena materials, and applications”, Annu. Rev. Mater. Res., 41, pp.433-448, 2011.

[10] 朱旭山,「熱電材料與元件之原理及應用」,電子與材料雜誌,第22期,pp.78-89, 2004。

[11] Rowe, David Michael, ed. Thermoelectrics handbook : macro to nano, CRC press, 2005.

[12] M.?S. Dresselhaus, G. Chen, M.?Y. Tang, R.?G. Yang, H. Lee, D.?Z. Wang, Z.?F. Ren, J.-P. Fleurial, and P. Gogna, “New Directions for Low-Dimensional Thermoelectric Materials”, Advanced materials, 19, pp.1043-1053, 2007.

[13] N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, “Nanoparticle-in-Alloy Approach to Efficient Thermoelectrics: Silicides in SiGe”, Nano Letters, Vol. 9, No. 2, pp.711-715, 2009.

[14] Ali Shakouri, “Recent developments in semiconductor thermoelectric physics and materials”, Annu. Rev. Mater. Res., 41, pp.399-431, 2011.

[15] Rowe DM, ed., Handbook of thermoelectrics, Boca Raton: CRC, 1995.

[16] Yuzuru Miyazaki, Dai Igarashi, Kei Hayashi, and Tsuyoshi Kajitani, “Modulated crystal structure of chimney-ladder higher manganese silicides MnSiγ(γ~1.74)”, Physical Review, B, 78, 214104, 2008.

[17] J. Higgins, A. Schmitt, Llia. A. Guzei, and Song Jin, “Higher manganese silicide nanowires of Nowotny chimney ladder phase”, J. Am. Chem. Soc., 130, pp.16086-16094, 2008.

[18] Massalski, T. B., Okamoto, H., Subramanian, P. R., Kacprzak, L., and Scott, W. W., Binary alloy phase diagrams, American Society for Metals Metals Park, OH, 1986.


[19] R. De Ridder, G. Van Tendeloo, and S. Amelinckx, “Electron microscopic study of the chimney ladder structures MnSi2-x and MoGe2-x”, phys. stat. sol., 88, pp.383-393, 1976.

[20] U. Gottlieb, A. Sulpice, B. Lambert-Andron, and O. Laborde, “Magnetic properties of single crystalline Mn4Si7”, J. Alloys Compd., 361, pp.13-18, 2003.

[21] O. Schwomma, H. Nowotny, and A. Wittman, Monatsch. Chem., 94, pp.681, 1963.

[22] H. W. Knott, M. H. Mueller, and L. Heaton, “The crystal structure of Mn15Si26”, Acta Crystallogr, 23, pp.549, 1967.

[23] G. Zwilling, and H. Nowotny, Monatsch. Chem., 104, pp.668-675, 1973.

[24] D. B. Migas, V. L. Shaposhnikov, A. B. Filonov, and V. E. Borisenko, “Ab initio study of the band structures of different phases of higher manganese silicides”, PHYSICAL REVIEW B, 77, 075205, 2008.

[25] Ikuto Aoyama, Mikhail I. Fedorov, Vladimir K. Zaitsev, Fedor Yu. Solomkin, Ivan S. Eremin, Aleksandr Yu. Samunin, Mika Mukoujima, Seijiro Sano, and Toshihide Tsuji, “Effects of Ge Doping on Micromorphology of MnSi in MnSi?1.7 and on Their Thermoelectric Transport Properties”, Japanese journal of applied physics, vol. 44, No. 12, pp.8562-8570, 2005.

[26] Kawasumi I, Sakata M, Nishida I, and Masumoto K., “Crystal growth of manganese silicide, MnSi~1.73 and semiconducting properties of Mn15Si26”, Journal of materials science, pp.355-366, 1980.

[27] Nishida I, Masumoto K, Kawasumi I, and Sakata M., “Striations and crystal structures of the matrix in the MnSi-Si alloy system”, Journal of the less–common metals, 71, pp.293-301, 1980.

[28] A. Neubauer, C. Pfleiderer, R. Ritz, P.G. Niklowitz, and P. Boni, “Hall effect and magnetoresistance in MnSi”, Physica B, 404, pp.3163-3166, 2009.

[29] A.J. Zhou, T.J. Zhu, X.B. Zhao, S.H. Yang, T.Dasgupta, C. stiewe, R. hassdorf, and E. Mueller, “Improved thermoelectric performance of higher manganese silicides with Ge additions”, Journal of electronic materials, Vol. 39, No. 9, pp.2002-2007, 2010.

[30] Wenhui Luo, Han Li, Fan Fu, Wen Hao, and Xinfeng Tang, “Improved thermoelectric properties of Al-doped higher manganese silicide prepared by a rapid solidification method”, Journal of electronic materials, Vol. 40, No. 5, pp.1233-1236, 2011.

[31] V. Ponnambalam, Donald T. Morelli, S. Bhattacharya, and Terry M. Tritt, “The role of simultaneous substitution of Cr and Ru on the thermoelectric properties of defect manganese silicides MnSiδ (1.73 < δ < 1.75)”, Journal of Alloys and Compounds, 580, pp. 598-603, 2013.

[32] V. Ponnambalam, and Donald T. Morelli, “Effect of Cr and Fe substitution on the transport properties of the Nowotny Chimney–Ladder MnSiδ (1.73< δ< 1.75) compounds”, Journal of electronic materials, Vol. 41, No. 6, pp.1389-1394, 2012.

[33] M. Saleemi, A. Famengo, S. Fiamen, S. Boldrini, S. Battiston, M. Johnsson, M.Muhammed, and M.S. Toprak, “Thermoelectric performance of higher manganese silicide nanocomposites”, Journal of Alloys and Compounds, 619, pp.31-37, 2015.

[34] Akio Yamamoto, Swapnil Ghodke, Hidetoshi Miyazaki, Manabu Inukai, Yoichi Nishino, Masaharu Matsunami, and Tsunehiro Takeuchi, “Thermoelectric properties of supersaturated Re solid solution of higher manganese silicides”, Japanese Journal of Applied Physics, 55, 020301, 2016.

[35] Xi Chen, Jianshi Zhou, John B. Goodenough, and Li Shi, “Enhanced thermoelectric power factor of Re-substituted higher manganese silicides with small islands of MnSi secondary phase”, J. Mater. Chem. C, 3, pp.10500-10508, 2015.

[36] A.J. Zhou, X.B. Zhao, T.J. Zhu, S.H. Yang, T. Dasgupta, C.Stiewe, R. Hassdorf, and E. Mueller, “Microstructure and thermoelectric properties of SiGe-added higher manganese silicides”, Materials Chemistry and Physics, 124, pp.1001-1005, 2010.

[37] A.J. Zhou, X.B. Zhao, T.J. Zhu, Y.Q. Cao, C. Stiewe, R. Hassdorf, and E. Mueller, “Composites of Higher Manganese Silicides and Nanostructured Secondary Phases and Their Thermoelectric Properties”, Journal of electronic materials, Vol. 38, No. 7, pp.1072-1077, 2009.

[38] X. Chen, S. N. Girard, F. Meng, E. Lara-Curzio, S. Jin, J. B. Goodenough, J. Zhou, and L. Shi, “Approaching the Minimum Thermal Conductivity in Rhenium-Substituted Higher Manganese Silicides”, Adv. Energy Mater., 4, 1400452, 2014.

[39] I. Itoh, and M. Yamada, “Synthesis thermoelectric manganese silicide by machnical alloying and pulse discharge sintering”, Journal of electronic materials, Vol. 38, pp.925-929, 2009.

[40] Z.M. Wang, Y. D. Wu, and Y. J. He, “Seebeck coefficient of Mn-Si materials prepared by spark plasma sintering”, International journal of modern physics B, 18, pp.2279-2286, 2004.

[41] 周雅文,「火花電漿燒結技術於熱電材料開發之應用」,工業材料雜誌,287期,2010年11月。

[42] 林麗娟,「X光繞射原理及其應用」,工業材料雜誌,86期,100-109頁,1994年2月。

[43] D. A. Ditmars, S. Ishihara, S. S. Chang, and G. Bernstein, “Enthalpy and heat-capacity standard reference material : synthetic sapphire (α-Al2O3) from 10 to 2250 K ”, JOURNAL OF RESEARCH of the National Bureou of Standards, Vol.87, No. 2, pp. 159-163, March-April 1982.
指導教授 李勝偉、洪健龍 審核日期 2017-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明