博碩士論文 104329013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:91 、訪客IP:18.191.171.10
姓名 蘇一華(Yi-Hua Su)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 平面式微型矽基熱電元件製作與研究
(Fabrication of Si-Based Planar Micro-thermoelectrics)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著電子元件操作功率、運算速度和積體電路密度不斷提升,元件操作時所產生之高溫將反噬電子元件的操作效能,而廢熱問題也愈顯明顯且重要,而熱電材料是一種能將電與熱直接互相轉換,因此我們希望能有效利用廢熱來產生電能。以現今半導體產業來說,若要將熱電材料元件整合於積體電路中以達到熱管理之功用,唯有使用矽基材料才可相容。本實驗室先前已針對矽奈米緞帶在SOI上的電導率與熱導率研究,因此本研究以矽奈米緞帶在SOI上作為材料基底。
將SOI試片透過氧化法將矽(Silicon)層減薄後進行一系列半導體製程(黃光微影、蝕刻、化學氣相沉積製程、金屬蒸鍍)製作出主動層厚度為100 nm且線寬為2 μm,線長為20 μm,分別在串聯的奈米緞帶上進行P型與N型重摻雜,在P與N型矽奈米緞帶連接處進行矽化反應形成NiSi金屬矽化物,最後以掀離製程完成白金線圈電極作為元件之加熱源與感測端。本實驗製作200對P型奈米緞帶串聯,在室溫300 K環境下,通以大電流產生焦耳熱而產生冷熱端溫差約 60 K,元件可產生Seebeck電壓150 μV。
摘要(英) With the rapid miniaturization of electric devices to boost the switching speed and to increase the number of components per integrated circuit (IC) chip, performance and reliability of devices are severely threatened by the higher operating temperature. Besides, waste heat issue becomes more important. Thermoelectric materials can transform the energy between heat and electric directly. We wish it can recover the waste heat to produce the power. In today’s semiconductor industry, Si-based thermoelectric materials fit in ICs that we can make a proper thermal management. We have done the research of the electric and thermal conduction of nanoribbon on the SOI (Silicon On Insulator). Therefore, we choose the above material base in this research.
By doing a series of semiconductor manufacturing, we make a 100-nm-thickness, 2-μm-width, 20-μm-length active layer, followed by heavy doped of Boron and Phosphorus in P and N type semiconductor respectively. Form the Nickel Silicide on the junction of P and N, and make the Platinum sensing coil acting as heater and sensor by lift-off processes. We make 200 pair of P-type nanoribbon in series, which produces 150 μV Seebeck voltage by 60 K temperature difference.
關鍵字(中) ★ 矽
★ 微影製程
★ 熱電元件
★ 熱電發電
關鍵字(英) ★ Silicon
★ Photolithography
★ Thermoelectrics
★ Thermoelectric generator
論文目次 摘要 ............................................................................................................................... i
Abstract ....................................................................................................................... ii
致謝 ............................................................................................................................ iii
目錄 ............................................................................................................................ iv
圖目錄 ..................................................................................................................... viii
表目錄 ....................................................................................................................... xi
第一章 緒論 .......................................................................................................... 1
1.1前言 ....................................................................................................................... 1
1.2熱電發展歷史 .................................................................................................... 2
1.3熱電效應原理 .................................................................................................... 4
1.4熱電優值(Figure of merit, ZT) ...................................................................... 7
1.5熱電發電器 ......................................................................................................... 9
第二章 實驗配置 ................................................................................ 11
2.2實驗設置............................................................................................. 12
2.3實驗製程設備 .................................................................................... 14
2.3.1雷射光罩製作系統 ...................................................................... 14
2.3.2光罩對準曝光機 ..................................................................................... 14
2.3.3中電流離子佈植機 ...................................................................... 15
2.3.4低壓化學氣相沉積系統 .............................................................. 16
2.3.5旋轉塗佈機 .................................................................................. 17
2.3.6反應式離子蝕刻系統 .................................................................. 17
2.3.7 PECVD電漿輔助化學氣相沉積系統 ........................................ 18
2.3.8高真空電子束暨熱阻式蒸鍍系統 .............................................. 19
2.3.9紫外光臭氧清洗機 ...................................................................... 19
2.3.10表面輪廓儀 ................................................................................ 20
2.3.11快速熱退火系統 ........................................................................ 20 2.3.12半導體特性分析儀 .................................................................... 21
2.3.13鋁線銲線機 ................................................................................ 21
2.3.14掃描式電子顯微鏡 .................................................................... 22
第三章 平面式微熱電元件製作..................................................... 26
3.1實驗步驟 ........................................................................................................... 26
3.1.1實驗試片準備 .............................................................................. 26
3.1.2第一道製程-對準圖形製作 ................................................................ 30
3.1.3第二、三道製程-N型與P型半導體離子佈植 ............................ 33
3.1.4第四道製程-定義元件主動層之區域 .............................................. 37
3.1.5第五道製程-LPCVD沉積氮化矽(SiNx)薄膜 ................................ 40
3.1.6第六道製程-以NiSi作為N型與P型矽半導體之連結 .......... 43
3.1.7第七道製程-E gun Thermal沉積鉑(Platinum)電極感測線圈 .. 47
3.1.8第八道製程-將元件下層二氧化矽(SiO2)掏空形成懸空結構 . 50
3.2熱電元件量測 ................................................................................................. 53
3.2.1製備熱電性質量測試片 ....................................................................... 53
3.2.2微熱電發電器量測方法 ....................................................................... 53
第四章 結果與討論 ....................................................................................... 56
4.1 RIE乾蝕刻形成主動元件層 ...................................................................... 56
4.2離子佈植形成P.N型半導體 ..................................................................... 58
4.3 LPCVD沉積氮化矽(SiNx)與去除 ............................................................ 59
4.4沉積鎳金屬形成NiSi金屬連結 ............................................................... 60
4.5白金加熱線圈金屬電極 ............................................................................... 62
4.6元件主動層矽(Silicon)底部懸空製程 ..................................................... 63
4.7熱電發電效能 ................................................................................................. 64
第五章 總結與未來展望 ............................................................................ 66
參考文獻 .................................................................................................................. 67
參考文獻
[1] Edward J. Correia, Sorry, Moore′s Law: Multicore Is The New GameInTown,2011,fromhttp://www.crn.com/news/componentsperipherals/240003030/sorry-moores-law-multicore-is-the-new-game-in-town.htm
[2] T. J. Seebeck, ”Magnetische Plarisation der Metalle und Erze durch Temperatur-Differenz,” Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, 265-373 (1823).
[3] J. C. Peltier, ”Nouvelles experiences sur la caloricite des courans electrique,” Annales de Chimie et de Physique, 56, 371
[4] http://thermoelectrics.matsci.northwestern.edu/thermoelectrics/history
[5] G.Mahan, B. Sales, J. Sharp, ”Thermoelectric Materials : New Approaches To An Old Problem,” Physics today, 50, 42 (1997).
[6] A. F. Ioffe, ”Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London, (1957).
[7] H. J. Goldsmd, R. W. Dougl, ”The use of semiconductors in thermoelectric refrigeration”, British Journal Applied Physics, 5, 386 (1954).
[8] http://www.transtutors.com/physics-homework-help/current- electricity/seebeck-effect.
[9] http://www.buzzle.com/articles/the-peltier-effect-explained.html
[10] Recent Developments inSemiconductor ThermoelectricPhysics and
MaterialsJack Baskin School of Engineering, University of California, Santa Cruz, California 95064-1077;
[11] D. M. Rowe, ”Thermoelectrics handbook micro to nano,” (2006).
[12] Van Herwaarden, A.W., “The Seebeck Effect in Silicon ICs”, Sensors and Actuators, Vol. 6, No. 4 (1984), pp.245-254.
[13] Yamashita, O., Sadatomi, N., “Dependence of Seebeck Coefficient on Carrier Concentration in Heavily B- and P-Doped Si1-xGex System,” Jpn. J. Appl.Phys., Vol. 38, No. 11, Nov. 1999, pp. 6394-6400.
[14] R. G. Egbert, M. R. Harvey, B. P. Otis, “Microscale Silicon Thermoelectric Generator with Low Impedance for Energy Harvesting”.
[15] M. Strasser, R. Aigner, M.Franosch, G. Wachutka “Miniaturizes thermoelectric generators based on poly-Si and poly-SiGe surface micromachining” Sensors and Actuators A 97-98 (2002) 535-542
[16] Pin-Hsu Kao , Po-Jen Shih , Ching-Liang Dai ,Mao-Chen
Liu“Fabrication and Characterization of CMOS-MEMS Thermoelectric Micro Generators” Sensors 2010, 10, 1315-1325
[17] Ming-Zhi Yang, Chyan-Chyi Wu, Ching-Liang Dai,Wen-Jung Tsai“Energy Harvesting Thermoelectric Generators Manufactured
Using the Complementary Metal Oxide Semiconductor Process” Sensors 2013, 13, 2359-2367
[18] Maria Theresa de Leon, Harold Chong, Michael Kraft“Solar thermoelectric generators fabricated on a silicon-on-insulator substrate” J. Micromech. Microeng. 24 (2014) 085011 (12pp)
[19] VLSI 製造技術,莊達仁,5 版,高立圖書有限公司
[20] https://zh.wikipedia.org/wiki/%e6%89%93%E7%B7%9A%E6%8E
A5%E5%90%88
[21] http://www.nnf.ncsu.edu/facilities/lithography/deneme-litho
[22] Dow Corning, “Chemical Vapor Deposition”, ,Available: http://www.dowcorning.com/content/etronics/etronicschem/etronics_newcvd_tutorial3.asp?DCWS=Electronics&DCWSS=Chemical%20Vapor%20Deposition [Accessed: 25 Nov. 2011]
[23] http://matthieu.lagouge.free.fr/microtechnology/dry_etch.html
[24] https://www.jeol.co.jp/en/science/eb.html
[25] https://www.intechopen.com/books/crystalline-silicon-properties-and-uses/high-mass-molecular-ion-implantation
[26] http://www.super-power-smh.com/company.html新美化光電產品示意圖
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2017-9-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明