博碩士論文 104329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.15.202.186
姓名 陳奕瑋(Yi-Wei Chen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 矽多層次奈米結構應用於捕捉鼻咽癌循環腫瘤細胞與EB病毒DNA偵測
(Si Hierarchical Nanostructures for Capturing Nasopharyngeal Cancer Circulating Tumor Cells and Detecting EBV DNA)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 藉由研究循環腫瘤細胞(circulating tumor cells, CTCs)可以幫助我們了解癌細胞轉移的生物學,透過監測患者血液中CTCs的數量更可以幫助我們了解治療的方式是否有效。大多數癌症病患的死因是由轉移的癌細胞導致,而非原發腫瘤,因此若能於癌症初期就從血液中偵測到CTC,將提供早期的診斷或甚至於個人化的治療。
本實驗利用一種低成本的濕式蝕刻法製備出矽多層次奈米結構 (Pyramid/Nanowire, NW)來捕捉血液中的鼻咽癌(nasopharyngeal cancer, NPC)細胞。根據實驗結果顯示,金字塔結構可以透過它的幾何形狀來增加表面積,使基板表面上抗體的數量增加,因能夠提升細胞與基板產生鍵結的機會。 此外,奈米線結構可以增加細胞與基板之間的附著性,因為癌細胞表面的偽足可以延伸至奈米線與奈米線之間的縫隙中,使Pyramid NW結構成為一個理想的CTC捕捉基板。
大多數鼻咽癌病患血液中EBV DNA的濃度會高於一般人。近年來由於表面增強拉曼散射(SERS)具高靈敏度來偵測分子的特異性,這項技術已可用來偵測DNA。本實驗中僅需簡單的將Pyramid NW基板泡入硝酸銀溶液中,即可變成一個良好的SERS基板,其DNA偵測的極限可達到10-13M,增強因子經由計算後也高達107。
摘要(英)
Studying circulating tumor cells (CTCs) helps us understand the biology of metastasis. Monitoring CTCs counts in patients’ blood can also help us know if the treatment works or not. Most cancer patients were died because of distant metastases instead of primary tumor. Thus, early detection of CTCs could provide early diagnosis of metastases and even personalized therapy.
Herein, we introduced a new CTC capturing substrate composed of Si hierarchical nanostructures (Pyramid NW) method to capture nasopharyngeal carcinoma (NPC) cell in vitro. According to the results, the pyramid microstructure increased the surface area because of its geometric shape. The amount of antibodies on the substrate also increase, enhancing the cell-binding ability of the substrate. The nanowire (NW) structure improved the cell adhesion by letting the cytoskeleton of the cells extend into the gaps between the NW, making pyramid NW structure an ideal substrate for CTC capture.
The Epstein-Barr virus (EBV) DNA titers in NPC patient’ blood is usually higher than normal people. In recent years, Surface enhanced Raman scattering (SERS) has become an efficient technique for detecting DNA because of its single molecule level sensitivity and molecular specificity. In this study, our pyramid NW substrate can easily be transformed into a SERS substrate by dipping it into AgNO3 solution. The DNA detection limit can reach up to 10-13M and the calculated enhancement factor can achieve up to 107.
關鍵字(中) ★ 循環腫瘤細胞 循環腫瘤細胞 循環腫瘤細胞
★ 鼻咽癌
★ 金字塔/奈米線
★ EBV DNA
★ 表面增強拉曼散射
關鍵字(英) ★ CTCs
★ NPC
★ Pyramid NW
★ EBV DNA
★ SERS
論文目次
摘要 I
ABSTRACT II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 文獻回顧 1
1.1 循環腫瘤細胞 1
1.2 捕捉CTCS的方法 2
1.3 金字塔/奈米線結構之製備 4
1.3.1 金字塔蝕刻機制 4
1.3.2 矽奈米線蝕刻機制 5
1.4 拉曼光譜 8
1.4.1 拉曼散射原理 8
1.4.2 表面增強拉曼散射 9
1.5 鼻咽癌簡介 12
1.6 接觸角之相關理論 13
1.6.1 Young’s Equation 13
1.6.2 Wenzel model & Cassie model 13
1.7 研究動機 16
第二章 實驗方法 19
2.1 實驗流程 19
2.2 實驗藥品 20
2.3 分析儀器 21
2.3.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 21
2.3.2 螢光顯微鏡 (Fluorescence Microscope) 21
2.3.3 顯微拉曼光譜儀 (Micro-Raman Spectrometer) 22
2.3.4 接觸角量測儀 (Contact Angle) 22
第三章 利用矽多層次奈米結構於捕捉癌細胞 23
3.1 實驗步驟 23
3.1.1 製備金字塔/矽奈米線結構 23
3.1.2 表面抗體修飾處理 23
3.2.3 癌細胞培養與偵測 24
3.2 結果與討論 25
3.2.1 基板結構與形貌分析 25
3.2.2 細胞數量檢測 28
3.2.3 細胞形貌分析 31
3.3 結論 34
第四章 利用矽多層次奈米結構之表面增強拉曼散射基板於EBV DNA感測 35
4.1 實驗步驟 35
4.1.1 製備金字塔/矽奈米線結構 35
4.1.2 表面修飾奈米銀顆粒處理 35
4.1.3 DNA鍵結 35
4.2 結果與討論 38
4.2.1 基板結構與形貌分析 38
4.2.2 表面增強拉曼散射強度分析 40
4.2.3 接觸角分析 47
4.3 結論 49
參考文獻 50
參考文獻

1. T.R. Ashworth, “A case of cancer in which cells similar to those in the tumours were seen in the blood after death”, Australian Medical Journal, 14, 146-147 (1869).
2. S. Yin, Y.L. Wu, B. Hu, Y. Wang, P. Cai, C.K. Tan, D. Qi, L. Zheng, W. R. Leow, N. S. Tan, S. Wang, and X. Chen, “Three-Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells”, Advanced Materials Interfaces, 1, 1300043 (2014).
3. F. Zheng, Y. Cheng, J. Wang, J. Lu, B. Zhang, Y. Zhao, and Z. Gu, “Aptamer-Functionalized Barcode Particles for the Capture and Detection of Multiple Types of Circulating Tumor Cells”, Advanced Materials, 26, 7333-7338 (2014).
4. Ana M.C. Barradas, and Leon W.M.M. Terstappen, “Towards the Biological Understanding of CTC: Capture Technologies, Definitions and Potential to Create Metastasis”, Cancers, 5, 1619-1642 (2013).
5. S. Valastyan, and R.A. Weinberg, “Tumor metastasis: molecular insights and evolving paradigms”, Cell, 147, 275-292 (2011).
6. P. Klaus, and A.P. Catherine, “Circulating tumour cells in cancer patients: challenges and perspectives”, Trends in Molecular Medicine, 16, 398-406 (2010).
7. J. Kaiser, “Cancer’s Circulation Problem”, Science, VOL327, 1072-1074 (2010).
8. Y.F. Sun, X.R. Yang, J. Zhou, S.J. Qiu, J. Fan, Y. Xu, “Circulating tumor cells: advances in detection methods, biological issues, and clinical relevance”, Journal of Cancer Research and Clinical Oncology, 137, 1151-1173 (2011).
9. D.J. Kim, W.Y. Lee, N.W. Park, G.S. Kim, K.M. Lee, J. Kim, M.K. Choi, G.H. Lee, W. Han, S.K. Lee, “Drug response of captured BT20 cells and evaluation of circulating tumor cells on a silicon nanowire platform”, Biosensors and Bioelectronics, 67, 370-378 (2015).
10. N. Zhang, Y. Deng, Q. Tai, B. Cheng, L. Zhao, Q. Shen, R. He, L. Hong, W. Liu, S. Guo, K. Liu, H.R. Tseng, B. Xiong, and X.Z. Zhao, “Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients”, Advanced Materials, 24, 2756-2760 (2012).
11. S. Hou, H. Zhao, L. Zhao, Q. Shen, K.S. Wei, D.Y. Suh, A. Nakao, M.A. Garcia, M. Song, T. Lee, B. Xiong, S.C. Luo, H.R. Tseng, and H.H. Yu, “Capture and Stimulated Release of Circulating Tumor Cells on Polymer-Grafted Silicon Nanostructures”, Advanced Materials, 25, 1547-1551 (2013).
12. R. Gertler, R. Rosenberg, K. Fuehrer, M. Dahm, H. Nekarda, and J.R. Siewert, “Detection of Circulating Tumor Cells in Blood Using an Optimized Density Gradient Centrifugation”, Recent Results in Cancer Research, 162, 149-155 (2003).
13. M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki, T. Yoshino, T. Tanaka, and T. Matsunaga, “Size-Selective Microcavity Array for Rapid and Efficient Detection of Circulating Tumor Cells”, Analytical Chemistry, 82, 6629-6635 (2010).
14. S. Zheng, H. Lin, J.Q. Liu, M. Balic, R. Datar, R. J. Cote, Y.C. Tai, “Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells”, Journal of Chromatography, 1126, 154-161 (2007).
15. S.J. Tana, R.L. Lakshmic, P. Chenc, W.T. Limd, L. Yobas, C.T. Lim, “Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients”, Biosensors and Bioelectronics, 26, 1701-1705 (2010).
16. J. Meng, H. Liu, and S. Wang, “Nanostructured Substrates for Circulating Tumor Cell Capturing”, Soft Matter Nanotechnology: From Structure to Function, First Edition, 293-308 (2015).
17. L. Bai, Y. Du, J. Peng, Y. Liu, Y. Wang, Y. Yang, and C. Wang, “Peptide-based isolation of circulating tumor cells by magnetic nanoparticles”, Journal of Materials Chemistry B, 2, 4080-4088 (2014).
18. L. Wang, W. Asghar, U. Demirci, and Y. Wan, “Nanostructured substrates for isolation of circulating tumor cells”, Nano Today, 8(4), 347-387 (2013).
19. J. Sekine, S.C. Luo, S. Wang, B. Zhu, H.R. Tseng, and H.H. Yu, “Functionalized Conducting Polymer Nanodots for Enhanced Cell Capturing: The Synergistic Effect of Capture Agents and Nanostructures”, Advanced Materials, 23, 4788-4792 (2011).
20. L.P. Xu, J. Meng, S. Zhang, X. Ma, and S. Wang, “Amplified effect of surface charge on cell adhesion by nanostructures”, Nanoscale, 8, 12540 (2016).
21. S.K. Lee, G.S. Kim, Y. Wu, D.J. Kim, Y. Lu, M. Kwak, L. Han, J.H. Hyung, J.K. Seol, C. Sander, A. Gonzalez, J. Li, and R. Fan, “Nanowire Substrate-Based Laser Scanning Cytometry for Quantitation of Circulating Tumor Cells”, Nano Letters, 12, 2697-2704 (2012).
22. X. Yu, R. He, S. Li, B. Cai, L. Zhao, L. Liao, W. Liu, Q. Zeng, H. Wang, S.S. Guo, and X.Z. Zhao, “Magneto-Controllable Capture and Release of Cancer Cells by Using a Micropillar Device Decorated with Graphite Oxide-Coated Magnetic Nanoparticles”, Small, 9(22), 3895-3901 (2013).
23. A.D. Hughes, and M.R. King, “Use of Naturally Occurring Halloysite Nanotubes for Enhanced Capture of Flowing Cells, Langmuir, 26(14), 12155-12164 (2010).
24. Z. Zha, L. Jiang, Z. Dai, and X. Wu, “A biomimetic mechanism for antibody immobilization on lipid nanofibers for cell capture”, APPLIED PHYSICS LETTERS, 101, 193701 (2012).
25. S. Yin, Y.L. Wu, B. Hu, Y. Wang, P. Cai, C. K. Tan, D. Qi, L. Zheng, W.R. Leow, N. S. Tan, S. Wang, and X. Chen, “Three-Dimensional Graphene Composite Macroscopic Structures for Capture of Cancer Cells”, Advanced Materials Interfaces, 1, 1300043 (2014).
26. S. Wang, K. Liu, J. Liu, Z.T.F. Yu, X. Xu, L. Zhao, T. Lee, E. K. Lee, J. Reiss, Y.K. Lee, L.W. K. Chung, J. Huang, M. Rettig, D. Seligson, K.N. Duraiswamy, C.K.F. Shen, and H.R. Tseng, “Highly Efficient Capture of Circulating Tumor Cells by Using Nanostructured Silicon Substrates with Integrated Chaotic Micromixers”, Angewandte Chemie International Edition, 50, 3084-3088 (2011).
27. P.J. Holmes, “The Electrochemistry of Semiconductors”, Journal of The Electrochemical Society, 109, 228C (1962).
28. H. Seidel, L. Csepregi, A. Heuberger, H. BaumgSrtel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, Journal of The Electrochemical Society, 137, 3626-3632 (1990).
29. I.J. Lee, U. Paik, and J.G. Park, “Solar cell implemented with silicon nanowires on pyramid-texture silicon surface”, Solar Energy, 91, 256-262 (2013).
30. K.Q Peng, Y.J Yan, S.P Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry”, Advanced Materials, 14, 1164-1167 (2002).
31. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles”, Advanced Functional Materials, 16, 387-394 (2006).
32. C.V. Raman, and K.S. Krishnan, “A new type of secondary radiation”, Nature, 121, 501-502 (1928).
33. M. Fleischmann, P.J. Hendra, and Mcquillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chemical Physics Letters, 26, 163-166 (1974)
34. B.N.J. Persson, K. Zhao, and Z. Zhang, “Chemical Contribution to Surface-Enhanced Raman Scattering”, Physical Review Letters, 96, 207401 (2006).
35. L. He, C. Ai, W. Wang, N. Gao, X. Yao, C. Tian, and K. Zhang, “An effective three-dimensional surface-enhanced Raman scattering substrate based on oblique Si nanowire arrays decorated with Ag nanoparticles”, Journal of Materials Science, 51, 3854-3860 (2016).
36. E.C.L. Ru, E. Blackie, M. Meyer, and P.G. Etchegoin, “Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study”, The Journal of Physical Chemistry C, 111, 13794-13803 (2007).
37. M.P. Curado, B. Edwards, H.R. Shin, H. Storm, J. Ferlay, M. Heanue and P. Boyle, “Cancer Incidence in Five Continents. Volume IX”, 160, 1-837 (2008).
38. Bureau of Health Promotion Department of Health the Executive Yuan, “Cancer Registry Annual Report, 2007 TAIWAN”.
39. K.M. Shah, and L.S. Young, “Epstein–Barr virus and carcinogenesis: beyond Burkitt’s lymphoma”, Clinical Microbiology and Infection, 15, 982-988 (2009).
40. J.C. Lin, W.Y. Wang, K. Y. Chen, Y.H. Wei, W.M. Liang, J.S. Jan, and R.S. Jiang, “Quantification of Plasma Epstein–Barr Virus DNA in Patients with Advanced Nasopharyngeal Carcinoma”, The New England Journal of Medicine”, 350, 2461-2470 (2004).
41. 國家衛生研究院,“鼻咽癌臨床診療指引”,2011。
42. T. Young, “An Essay on the Cohesion of Fluids”, Philosophical Transactions of the Royal Society, 95, 65-87 (1805).
43. R.N. Wenzal, “Resistance of Solid Surfaces to Wetting by Water”, Industrial and Engineering Chemistry, 28, 988-994 (1936).
44. A.B.D Cassie, and S. Baxter, “Wettability of Porous Surfaces”, Transactions of the Faraday Society, 40, 546-551 (1944).
45. Y. Man, Q. Wang, and W. Kemmner, “Currently Used Markers for CTC Isolation - Advantages, Limitations and Impact on Cancer Prognosis”, Journal of Clinical and Experimental Pathology, 1, 1000102 (2011).
46. C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao, and B. Y. Man, “Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high performance SERS”, Scientific Reports, 6, 25243 (2016).
47. M.Y. Khaywah, S. Jradi, G. Louarn, Y. Lacroute, J. Toufaily, T. Hamieh, and P.M. Adam, “Ultrastable, Uniform, Reproducible, and Highly Sensitive Bimetallic Nanoparticles as Reliable Large Scale SERS Substrates”, The Journal of Physical Chemistry C, 119, 26091-26100 (2015).
48. H.Y. Chen, H.L. Lu, Q.H. Ren, Y. Zhang, X.F. Yang, S.J. Dinga, and D. W. Zhang, “Enhanced photovoltaic performance of inverted pyramid-based nanostructured black-silicon solar cells passivated by an atomic-layer-deposited Al2O3 layer”, Nanoscale, 7, 15142 (2015).
49. I.J. Lee, U. Paik, J.G. Park, “Solar cell implemented with silicon nanowires on pyramid-texture silicon surface”, Solar Energy, 91, 256-262 (2013).
50. Y. Han, X. Yu, D. Wang, and D. Yang, “Formation of Various Pyramidal Structures on Monocrystalline Silicon Surface and Their Influence on the Solar Cells”, Journal of Nanomaterials, 2013, 716012 (2013).
51. Y. Wang, L. Yang, Y. Liu, Z. Mei, W. Chen, J. Li, H. Liang, A. Kuznetsov, and D. Xiaolong, “Maskless inverted pyramid texturization of silicon”, Scientific Reports, 5, 10843 (2015).
52. T.W. Lin, H.Y. Wu, T.T. Tasi, Y.H. Laia, and H.H. Shen, “Surface-enhanced Raman spectroscopy for DNA detection by the self-assembly of Ag nanoparticles onto Ag nanoparticle–graphene oxide nanocomposites”, Physical Chemistry Chemical Physics, 17, 18443 (2015).
53. C.J. Orendorff, A. Gole, T.K. Sau, and C.J. Murphy, “Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence”, Analytical Chemistry, 77, 3261-3266 (2005).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2017-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明