博碩士論文 104329016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.149.233.188
姓名 鄧詠鐘(Yong-Zhong Deng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 新式鈍化接觸應用於矽基光偵測器之研究
(New passivated contact technology development and application for Si-base photodetectors)
相關論文
★ 類磊晶薄膜成長與調控並利用於太陽能電池之研究★ 矽基鍺薄膜光偵測器之研究
★ 低溫製備矽基鍺磊晶薄膜及矽基鍺緩衝層砷化鎵薄膜之研究★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究
★ 導波共振光學元件應用於生物感測器之研究★ 具平坦化側帶之超窄帶波導模態共振濾波器研究
★ 低溫成長鍺薄膜於單晶矽基板上之研究★ 矽鍺薄膜及其應用於光偵測器之研製
★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器★ 整合慣性感測元件之導波矽基光學平台研究
★ 矽基光偵測器研製與整合於光學波導系統★ 光學滑鼠用之光學元件設計
★ 高效率口袋型LED 投影機之研究★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究
★ 極化繞射光學元件在高密度光學讀取頭上之應用研究★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上,光電元件透過鈍化層降低表面復合速率,以達到降低元件暗電流之目的,然而金屬與半導體之間並無鈍化層,其載子復合速率較高。為了解決上述問題,有研究團隊提出鈍化接觸技術,以減緩金屬與半導體間的載子復合。此結構為金屬與半導體之間插入超薄的鈍化薄膜,藉由穿隧之方式進行載子傳輸,同時達到良好的鈍化效果。雖然此結構大部分用在太陽能電池上,但太陽能電池結構與光偵測器相似,故本研究將鈍化接觸應用至光偵測器,並探討其元件特性。
薄型氧化層為鈍化接觸之關鍵,故本研究先成長不同方式之氧化層,並探討其薄膜特性,而後將氧化層上堆疊氮化矽以提升整體鈍化效果。實驗結果顯示,透過退火溫度為200到800度的快速熱處理,退火溫度為400度時,鈍化接觸可量測到最大載子生命週期為1515us、iVoc為650mV。為了提升此結構之載子傳輸能力,我們利用乾蝕刻減薄氮化矽,使厚度從80nm降至15nm。
最後將此鈍化接觸結構應用到矽基光偵測器,實驗結果發現氮化矽與氧化層之鈍化接觸可以使光偵測器暗電流由1.44x10-7 A降低至5.42x10-9 A,暗電流密度最低可達1.93x10-5 mA/cm2。此外亦探討氧化銦錫覆蓋於此鈍化接觸結構,發現可使元件暗電流降至5.36x10-9A ,同時元件於操作偏壓為-5V下響應度具有0.658A/W的表現。
摘要(英)
Compared with III-V photodetector, Silicon based photodetector has 10 to 100 times higher dark current, so decreasing dark current is an important topic. In the past, Silicon based component reduces the surface recombination rate through the passivation layer to achieve the purpose of reducing the dark current of the component. However, there is no passivation layer between the metal and semiconductor. In order to solve the above problems, A technology call ‘‘passivated contact’’ is proposed to reduce the carrier recombination between the metal and the semiconductor. This structure is inserted the ultra-thin passivation film between the metal and semiconductor, it can achieve a good passivation effect and the carrier can tunnel the passivation. Rencently, this structure is mostly used in solar cells, but the solar cell structure is similar to photodetector, so this propasal of this research is to investigate the passivated contact, and apply it to the silicon based photodetector to lower the dark current density.
The ultra-thin oxide layer is the key to passivated contact, so this study first grows the oxide layer in different methods and discusses its properties, and then stacks the silicon nitride on the oxide layer to enhance the overall passivation effect. The experimental results show that Through RTA annealing interval of 200 degrees to 800 degrees to enhance the passivation properties, the passivated contact can measure the maximum lifetime is 1515us, iVoc is 650mV at 400 degrees. In order to enhance the carrier transport capacity of this structure, we use dry etching to reduce the thickness of silicon nitride from 80nm to 15nm.
Finally, passivated contact is applied to the silicon-based photodetector. The experimental results show that the passivated contact of the silicon nitride and the oxide layer can reduce the dark current of the photodetector from 1.44x10-7 to 5.42x10-9 A, dark Current density of up to 1.93x10-5 mA/cm2. In addition, it was also investigated that indium tin oxide covered with this passivated contact structure and found that the component dark current was reduced to 5.36x10-9A, and the responsibility of 0.658 A / W at an operating bias of -5 V.
關鍵字(中) ★ 光偵測器
★ 鈍化接觸
★ 矽基
關鍵字(英) ★ photodetector
★ passivated contact
★ silicon based
論文目次
第一章 緒論 1
• 1-1前言 1
• 1-2 研究動機 4
• 1-3 研究目的與架構 6
第二章 基本原理及文獻回顧 7
• 2-1光伏效應與光偵測器 7
• 2-1-1 PN結構製作方法 9
• 2-2 鈍化原理與鈍化接觸結構 9
• 2-2-1 載子復合機制與鈍化層 9
• 2-2-2 穿隧氧化層之鈍化接觸 10
• 2-2-3 氧化層缺陷 11
• 2-2-4 固定電荷與介面電荷密度量測與計算 14
• 2-2-5 超薄氧化層之文獻回顧 16
• 2-2-6 鈍化接觸結構之文獻回顧 18
第三章 實驗步驟、設備及分析儀器 22
• 3-1 鈍化接觸結構製備 22
• 3-1-1 極薄氧化層製備 22
• 3-1-2 覆蓋層製備 27
• 3-2 光偵測器元件製備流程 28
• 3-3 製程設備介紹 31
• 3-3-1 水平爐管 (Horizontal Furnace) 31
• 3-3-2 PECVD (SAMCO PECVD/Oxford PECVD) 32
• 3-2-3 反應離子蝕刻機 (Reactive-ion-etching) 32
• 3-2-4 磁控式電子束暨熱阻式蒸鍍系統 (E-gun / Thermal) 33
• 3-2-5 反應式偶合電漿化學氣相沉積系統(BMR-CVD) 34
• 3-2-6 離子濺鍍機(Sputtering) 34
• 3-2-7 快速熱退火(RTA) 35
• 3-2-8 光罩對準曝光機(Mask Aligner 6) 36
• 3-3 分析儀器介紹 37
• 3-3-1 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 37
• 3-3-2 光電導生命週期量測儀 (MWPCD) 37
• 3-3-3 光電子能譜儀 (x-ray photoelectron spectroscopy ,XPS) 38
• 3-3-4 電流-電壓特性曲線量測 (I-V Characteristics curve) 39
• 3-3-5 電容-電壓特性曲線量測 (C-V Characteristics curve) 39
• 3-3-6 傅里葉轉換紅外光譜儀 (FT-IR) 39
第四章 鈍化接觸及光偵測器之結果討論 41
• 4-1 超薄氧化層探討 41
• 4-1-1 超薄氧化層表面鈍化能力分析 41
• 4-1-2 氧化層電性分析 42
• 4-1-3 氧化層原子鍵結分析 44
• 4-2 不同覆蓋層之鈍化接觸結構 48
• 4-2-1 氮化矽覆蓋於鈍化接觸結構(Si3N4/SiO2) 48
• 4-2-2 氧化銦錫覆蓋於鈍化接觸結構(ITO/SiO2) 54
• 4-3 鈍化接觸應用於矽基光偵測器 57
• 4-3-1 PN結構與超薄氧化層鈍化接觸之光偵測器元件 58
• 4-3-2 覆蓋氮化矽之鈍化接觸結構應用在PN光偵測器元件 60
• 4-3-3 覆蓋氧化銦錫之鈍化接觸結構應用在PN光偵測器元件 62
• 4-3-4 覆蓋氧化銦錫與氮化矽之鈍化接觸結構應用在PN光偵測器元件 63
第五章 結論與未來展望 66
• 5-1 結論 66
• 5-2 未來展望 68
• 參考文獻 69
參考文獻
• 參考文獻
[1] R. M. C. de Almeida and I. J. R. Baumvol, Reaction-diffusion in high-κ dielectrics on Si, Surface Science Reports. 49, 3 (2003).
[2] Y. Ishikawa and S. Saito, "Ge-on-Si photonic devices for photonic-electronic integration on a Si platform," IEICE Electronics Express, 11, 20142008–20142008 (2014)
[3] Govind P. Agrawal, "Fiber Optic Communication System, " John Wiley, 3rd Edition (2004)
[4] E. obert, " Evacuation dynamics: Empirical results, modeling and applications, " Ph.D. Dissertation, Technischen Universität Wien, (2007)
[5] Karunagaran, B., et al., "Effect of rapid thermal annealing on the properties of PECVD
SiN(x) thin films. Materials Chemistry and Physics, "106 130-133. (2007)
[6] M.J. Stocks, A. Cuevas, A.W. Blakers. "Minority carrier lifetimes of multicrystalline silicon during solar cell processing. Proceedings of the 14th European Photovoltaic Solar Energy Conference, " Barcelona, Spain, 770–773. (1997)
[7] Blakers, A., High-efficiency crystalline silicon solar-cells. Festkorperprobleme-Advances in Solid State Phyics, 30 403-423. (1990)
[8] R. Swanson, S. Beckwith, R. Crane, W. Eades, Y. H. Kwark, R. Sinton, and S. Swirhun, “Point-contact silicon solar cells,” EPRI Rep, vol. 31, pp. 661–664, (1984)
[9] 游鈞傑, 王駿翰, and 簡崇恩, "透明導電膜應用於顯示器上之研究," 實務專題報告, 東南科技大學電子工程系
[10] 李玉華, "透明導電膜及其應用," 科儀新知, 12, 94–102 (1990)
[11] Lei Hao, X. D. "Thickness dependence of structural, electrical and optical properties of indium tin oxide (ITO) films deposited on PET substrates." ELSEVIER: 3504–3508. (2007)
[12] H.Koseoglu, F.Turkoglu, M. Kurt, and Mutlu D. Yaman, “Improvement of optical and electrical properties of ITO thin films by electro-annealing,” Vacuum, 120, 8-13 (2015)
[13] M. Bivour, "Improving the a-Si:H(p) Rear Emitter Contact of n-Type Silicon Solar Cells, " SiliconPV conference, (2012)
[14] https://embedded-note.hackpad.com/ep/pad/static/0KF0hrjt78j
[15] http://hyperphysics.phy-astr.gsu.edu/hbase/solids/pnjun.html
[16] B. E. A. Saleh and M. C. Teich, Fundamentals of photonics, New York, (2007)
[17] http://ecee.colorado.edu/~bart/book/book/chapter4/ch4_2.htm#fig4_2_4
[18] B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, Electron Devices, IEEE Transactions on 27, 606 (1980).
[19] http://www.xny365.com/news/article-39148.html
[20] F. Feldmann, M. Bivour,C. Reichel, M. Hermle,Stefan W. GlunzGlunz "Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics," Solar Energy Materials & Solar Cells, 120, 270-274 (2014)
[21] Y. Tao, V. Upadhyaya , Y. Y. Huang , C. W. Chen , K. Jones , A. Rohatgi "Carrier Selective Tunnel Oxide Passivated Contact enabling 21.4% Efficient Large-area N-type Silicon Solar Cells," 43rd IEEE Photovoltaic Specialist Conference, 7750103 (2016)
[22] S. Imai, S. Mizushima, Asuha, W.-B. Kim, H. Kobayashi "Properties of thick SiO2 /Si structure formed at 120C by use of two-step nitric acid oxidation method," Applied Surface Science, 254, 8054–8058 (2008)
[23] B. E. Deal, "Standardized terminology for oxide charges associated with thermally oxidized silicon, Electron Devices, " IEEE Transactions on 27, 606 (1980)
[24] D. K. "Schroder, Semiconductor material and device characterization, " 3rd ed Wiley, New Jersey, (2006).
[25] A.Koukab, A. Bath, and E. Losson, "An improved high frequency C-V method for interface state analysis on MIS structures, " Solid-State Electronics, vol. 41 p.635-641 (1997)
[26] L.M. Terman, "Solid-State Electronics," vol. 5, p.284 (1962)
[27] E. H. Nicollian, J. R.Brews, MOS physics and technology, Wiley, (1982).
[28] D. A. Neamen, Semiconductor Physics and Devices: Basic principles, 3rd ed McGraw-Hill, New York, (2003).
[29] http://ecee.colorado.edu/~bart/book/book/toc6.htm
[30] F. Feldmann ,M. Bivour ,C. Reichel , M. Hermle , and S.W. Glunz, "A passivated rear contact for high-efficiency n-type silicon solar cells enabling high Vocs and FF>82%." in 28th European PV solar energy conference and exhibitionParis, France. (2013)
[31] F. Feldmann ,M. Bivour ,C. Reichel , M. Hermle , and S.W. Glunz, " Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics" Solar Energy Materials & Solar Cells 120 270–274, (2014)
[32] F. Feldmann ,M. Simon, M. Bivour ,C. Reichel , M. Hermle , and S.W. Glunz, " Efficient carrier-selective p- and n-contacts for Si solar cells" Solar Energy Materials & Solar Cells 131 100–104, (2014)
[33] D. L. Young, W. Nemeth, S. Grover, A. Norman, H.C. Yuan, B. G. Lee, V. LaSalvia, P. Stradins, "Carrier selective, passivated contacts for high efficiency silicon solar cells based on transparent conducting oxides, " Energy Procedia, 55 733–740 ( 2014 )
[34] K.M. Gad, D.Vossing, P. Balamou, D. Hiller, B. Stegemann, H. Angermann, M. Kasemann, "Improved Si/SiOx interface passivation by ultra-thin tunneling oxide layers prepared by thermal oxidation, " Applied Surface Science, 353 1269–1276 (2015)
[35] B. Stegemann, K.M. Gad, P. Balamou, D. Sixtensson, D.Vossing, M. Kasemann, H. Angermann, "Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO2/Si interfaces with low defect densities, " Applied Surface Science, 395 78–85 (2017)
[36] F.J. Grunthaner, P.J. Grunthaner, "Chemical and electronic structure of the SiO2/Siinterface, " Mater.Sci.Rep. 1 p65. (1986)
[37] F.J. Himpsel, F.R. McFeely, A. Taleb-Ibrahimi, J.A. Yarmoff, G. Hollinger, "Microscopic structure of the SiO2/Si interface, " Phys. Rev. B 38 6084–6096, (1988)
[38] K. Hirose, H. Nohira, K. Azuma, T. Hattori, "Photoelectron spectroscopy studies of SiO2/Si interfaces, " Progr. Surf. Sci 82 3. (2007)
[39] K.L. Brower, "Kinetics of H2 passivation of Pb centers at the (111) Si-SiO2 interface, " Phys. Rev. B 38 9657–9666. (1988)
[40] ] B.E. Deal, A.S. "Grove, General relationship for the thermal oxidation of silicon, " Applied Surface Science 36 3770. (1965)
[41] T. Hattori, "Chemical structures of the SiO2Si interface, " Crit. Rev. Solid State Material. Science. 20 339–382. (1995)
[42] F.S Becker, In Reduced Thermal Processing for VLSI., Ed. R. A. Levy, NATO, ASI, K-87, 86-84, (1990).
[43] F. S. Becker, D. Pawlik, H. Anzinger, A. Spitzer, J. Vac. Sci. Technol., B. 5, 155, (1987).
[44] O. Buiu, G. Kennedy, M. Gartner, S. Taylor, "Structural analysis of silicon dioxide and silicon oxynitride films produced using an oxygen plasma, " IEEE Trans. Plasma Sci. 26 1700–1712. (1998)
[45] D.W. Hess, Plasma-assisted oxidation, anodization, and nitridation of silicon, IBM J. Res. Dev. 43127–145, (1999)
[46] S.K. Sharma, B.C. Chakravarty, S.N. Singh, B.K. Das, Oxidation of silicon in RF induced oxygen plasma, J. Mater. Sci. Lett. 9982–984, (1990)
[47] M.A. Szymanski, A.M. Stoneham, A. Shluger, The different roles of charged and neutral atomic and molecular oxidising species in silicon oxidation from ab initio calculations, Solid State Electron. 45 1233, (2001)
[48] K. Fujino, Y. Nishimoto, N. Tokumasu and K. Maeda, “Low Temperature, Atmospheric Pressure CVD Using Hexamethyldisiloxane and Ozone,” J. Electrochem. Soc., 139, 2282 (1992).
[49] I. Avigal, Solid State Technol., 26 (10) , 217 (1983).
[50] J.E. Tong and K. Schertenluib, and Carpio, R. A., Solid State Technol., 27(1), 161 (1984).
[51] J. Batey and E. Tierney, J. Appl. Phy., 60, 3136 (1986).
[52] 蔡淑儀, "利用感應耦合電漿化學氣相法在極低溫下沉積SiO2薄膜以製備 MIS 結構," 碩士論文, 國立成功大學微機電系統工程所, 2006
[53] J. W. Lee, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S.J. Pearton and F. Ren, “Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition”, J. of the Elect. Sci. 147, 1481-1486 (2000).
[54] J. W. Lee, K. D. Mackenzie, D. Johnson, J. N. Sasserath, S.J. Pearton and F. Ren, “Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition”, J. of the Elect. Sci. 147, 1481-1486 (2000).
[55] Mizushima, S., et al., "Nitric acid method for fabrication of gate oxides in TFT. " Applied Surface Science, 254(12): p. 3685-3689. (2008)
[56] Asuha, et al., "Postoxidation annealing treatments to improve Si/ultrathin SiO2 characteristics formed by nitric acid oxidation. " Journal of the Electrochemical Society, 151(12): p. G824-G828 (2004)
[57] Kobayashi, H., et al., " Nitric acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density. " Journal of Applied Physics, 94(11): p. 7328-7335. (2003)
[58] Asuha, et al., "Nitric acid oxidation of silicon at similar to 120 ℃ to form 3.5-nm 53 SiO2/Si structure with good electrical characteristics. " Applied Physics Letters, 85(17): p. 3783-3785. (2004)
[59] Pincik, E., et al., "On interface properties of ultra-thin and very-thin oxide/a-Si : H structures prepared by oxygen based plasmas and chemical oxidation. " Applied Surface Science, 253(16): p. 6697-6715. (2007)
[60] X. W. Sun, L. D. Wang and H. S. Kwok, “Improved ITO Thin Films with a Thin ZnO Buffer Layer by Sputtering”, Thin Solid Films, 360 75. (2000)
[61] K. Tominaga, T. Ueda, T. Ao, M. kataka and I. Mori, “ITO Films Prepared by Facing Target Sputtering System”, Thin Solid Films, 281-282194. (1996)
[62] S. Honda, M. Watamori and K. "The effects of oxygen content on electrical and optical properties of indium tin oxide films fabricated by reactive sputtering Oura, " Thin Solid Films 281-282 206, (1996)
[63] B. Karunagaran, S.J. Chung, S. Velumani, E.-K. Suh, " Effect of rapid thermal annealing on the properties of PECVD SiNx thin films, " Materials Chemistry and Physics 106 130–133, (2007)
[64] R. Hezel1, K. Blumenstock, R. Schörner, "Interface States and Fixed Charges in MNOS Structures with APCVD and Plasma Silicon Nitride, " Solid State Science and Technology. 131 1679–1683, (1984)
[65] M. Bivour, S. Schröer, K.-U. Ritzau, M. Hermle, S. W. Glunz, " Influence of Interfacial ITO Doping on a-Si:H(p) / ITO(n) Contact Properties for Silicon Heterojunction Solar Cells, " 27th EU PVSEC Conference, (2012)
指導教授 張正陽(Jeng-yang Chang) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明