博碩士論文 104352023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:44.220.44.148
姓名 洪欣宇(Hsin-Yu Hung)  查詢紙本館藏   畢業系所 土木工程學系在職專班
論文名稱 利用高解析衛星立體像對產製近岸水底地形
(Bathymetry mapping using high resolution satellite stereo-pair imagery)
相關論文
★ 物聯網制動功能之互操作性解決方案★ 地理網路爬蟲:具擴充及擴展性之地理網路資源爬行架構
★ TDR監測資訊平台之改善與 感測器觀測服務之建立★ 整合oneM2M 及OGC SensorThings API 標準建立開放式物聯網架構
★ 巨量物聯網資料之多重屬性索引架構★ 高效率異質性時序資料表示法辨別系統
★ A TOA-reflectance-based Spatial-temporal Image Fusion Method for Aerosol Optical Depth Retrieval★ An Automatic Embedded Device Registration Procedure for the OGC SensorThings API
★ 基於本體論與使用者興趣之個人化地理網路搜尋引擎★ 利用本體論整合城市模型及物聯網開放式標準探討智慧城市之應用
★ 運用無人機及影像套合法進行混凝土橋梁裂縫檢測★ GeoRank: A Geospatial Web Ranking Algorithm for a GeoWeb Search Engine
★ 應用高時空解析度遙測影像融合於海水覆蓋率之監測★ LoRaWAN Positioning based on Time Difference of Arrival and Differential Correction
★ 類神經網路逆向工程理解遙測資訊:以Landsat 8植被分類為例★ 基於語意網技術與WordNet促進地理網路資源之探索
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近岸水底地形模型對於研究海洋生物的空間分佈、監測海底形態的變
化及產生精確之正射校正影像是很重要的資訊。可獲取水下地形的方法中,聲納、空載測深光達精度高但須至現地量測。而衛星影像推算水底地形,適合用於無法到達和有爭議的區域。其中,衛星影像的光譜資訊可以幫助推估反演地形模型,但需要精確的訓練數據。另一方面,數位攝影測量可使用高解析度衛星立體對直接測量精確的水下地形,不需要訓練資料。因此,本研究利用高解析度衛星立體對產製水下地形。
本研究方法的概念為先利用初始地形模型產製的兩張正射影像進行匹配。若地形模型正確無誤,則兩張正射影像應極為相似。然而,若匹配所得之共軛點具有視差,則代表地形模型具有誤差。過去文獻常使用外方位參數推估共軛點視差對應之高程修正量,但現在常見的高解析度衛星資料僅提供有理函數模型,無法直接得知衛星拍攝的位置及姿態。因此本研究使用立體對的交會角、等分線仰角和不對稱角,配合匹配取得之視差估算高程修正量。
提出的方法包括四個主要步驟:(1)前置處理,(2)計算高程修正量,(3)地形重建,(4)水下地形折射校正。首先,使用初始水下地形模型產生待匹配之正射影像,為了增加影像匹配的效能,我們只匹配從主正射影像中提取的特徵點。再計算共軛點的視差,估計地形模型上的高程修正量,此過程配合影像金字塔迭代。最後,由於光折射的性質,需要進行折射校正以產生最終的水底地形模型。
本研究之測試區位在南海的東沙環礁。使用空載測深光達產生的地形模型進行精度檢核後,有以下幾點發現:(1)使用融合影像之匹配點精度在淺區域精度高,可達0.52 公尺、(2)對於地形模型,由於綠波段影像於深區域之成功匹配點較多,模型整體精度優於融合影像之成果,可達1.15公尺、(3)水底地形特徵不明顯,小的匹配視窗(小於31×31)容易造成錯誤匹配、(4)綠波段之水體穿透性佳,不同匹配門檻(0.6, 0.7, 0.8)之設定無明顯的成果差異。
摘要(英)
Coastal digital elevation model (DEM) is important to map the spatial distribution of marine organisms, monitor changes of seafloor morphology, and produce accurate orthorectified images. There are different approaches for
bathymetry mapping. For example, sonar and airborne bathymetric Lidar have high accuracy, but both face difficulties on monitoring inaccessible and controversial area. On the other hand, satellite imagery does not have this limitation. The spectral information in satellite imagery can be helpful for retrieving coastal DEM. However, this approach requires a good quality of
training data. Therefore, digital photogrammetry approaches are more preferable as they can measure accurate bathymetry without the training data requirement.
This research first uses an initial DEM to generate two orthorectified images for image matching. If the DEM is accurate, these two orthorectified images should be very similar. However, if parallaxes happen between the orthorectified images, we assume they are caused by the incorrectness of the DEM. As the traditional approaches often use the exterior orientation parameters (EOPs) of images to estimate elevation corrections, EOPs may not be available for every satellite images nowadays. Hence, this research estimates the elevation corrections from parallaxes by using the convergence angle, bisector angle, and asymmetry angle of the stereo-pair.
In general, the proposed method comprises four main steps: (1)pre-processing, (2) elevation correction, (3) DEM reconstruction, and (4) refraction correction. First of all, an initial DEM is applied to produce orthorectified images. In order to increase the performance for image matching, we only match the features extracted from the master image. After calculating parallaxes, we can estimate the elevation corrections and iterate the process using image pyramids. Finally, because of the refraction effect, the refraction correction is necessary to produce the final bathymetry DEM.
We have examined the proposed solution on the Dongsha Atoll in the South China Sea. By comparing with a DEM derived from Lidar, we have the following observations: (1) For the accuracy of matched points, pan-sharpened image has better performance on the shallow water region, which is about 0.52 meters. (2) For the accuracy of DEM, green bend images can achieve more match points on the deeper water region, which result in a more accurate (i.e., 1.15 meters) DEM. (3) Since underwater features are less obvious, small target window size (i.e., less than 31 × 31) would result in wrong matches. (4) In terms of the correlation coefficient threshold, as the Green band has good water penetration performance, there were no significant difference when using different thresholds (i.e., 0.6, 0.7, 0.8).
關鍵字(中) ★ 水底地形
★ 數位攝影測量
★ 立體像對
★ 折射校正
關鍵字(英) ★ bathymetry
★ photogrammetry
★ stereo-pair
★ refraction correction
論文目次
目錄
摘 要 i
Abstract iii
致謝v
目錄vi
圖目錄ix
表目錄 xii
第一章 前言1
1.1 研究動機與目的1
1.2 文獻回顧3
1.2.1 資料面3
1.2.2 方法面6
1.2.3 光與水折射 7
1.3 研究限制8
1.4 研究內容8
第二章 研究方法10
2.1 前置處理11
2.2 計算高程修正量 11
2.2.1 正射影像萃取特徵11
2.2.2 影像匹配14
2.2.3 視差修正高程16
2.3 地形重建19
2.4 水下地形折射校正19
第三章 實驗成果與分析22
3.1 實驗資料介紹22
3.1.1 測試資料22
3.1.2 檢核資料26
3.1.3 直接地理定位28
3.1.4 使用參數29
3.2 實驗內容35
3.2.1 匹配視窗36
3.2.2 匹配門檻值36
3.2.3 實際應用36
3.3 實驗結果與分析37
3.3.1 匹配視窗37
3.3.2 匹配門檻值56
3.3.3 實際應用69
3.4 實驗總結78
第四章 結論與建議80
參考文獻82
參考文獻
內政部,2011。99 年度東海與南海島教資料收集及建置工作案期末報告,共184 頁。
史天元、薛憲文、蕭輔導、陳信雅、徐佳筠、陳杰宗、陳佳勳等,2012。
航測及遙測學刊 第十六卷第3 期 第151-166 頁。
邱柏翰、高聖龍、蘇健民等,2009。海洋地理資訊系統於電子海圖之研究,地理資訊系統季刊 3(1),16-20。
Amitabh, A.V., GopalaKrishna, B., and Srivastava, P.K., 2005. Iterative Automatic Technique for the Refinement of DEM and Orthoimages, Map India Geomatics.
Canny, J., 1986. A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, 8(6), 679-698.
Chen, L.C., and Rau, J.Y., 1993. A Unified Solution for Digital Terrain Model and Orthoimage Generations from SPOT Stereopairs, IEEE Transactions on Geoscience and Remote Sensing, 31(6), 1243-1252.
Cheng, L., Ma, L., Cai, W., Tong, L., Li, M., and Du, P., 2015. Integration of Hyperspectral Imagery and Sparse Sonar Data for Shallow Water Bathymetry Mapping. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3235-3249.
Costa, B. M., Battista, T. A., and Pittman, S. J., 2009. Comparative evaluation of airborne LiDAR and ship-based multibeam SoNAR bathymetry and intensity for mapping coral reef ecosystems. Remote Sensing of Environment, 113(5), 1082-1100.
Erdogan, S., 2009. A comparision of interpolation methods for producing digital elevation models at the field scale. Earth surface processes and landforms, 34(3), 366-376.
Eugenio, F., Marcello, J., and Martin, J., 2015. High-resolution maps of bathymetry and benthic habitats in shallow-water environments using multispectral remote sensing imagery. IEEE Transactions on Geoscience and Remote Sensing, 53(7), 3539-3549.
Farr, H. K., 1980. Multibeam bathymetric sonar: sea beam and hydro chart. Marine Geodesy, 4(2), 77-93.
Fryer, J. G., 1983. A simple system for photogrammetric mapping in shallow water. Photogrammetric Record, 11(62), 203-208.
Fryer, J.G., and Kniest, H.T., 1985. Errors in Depth Determination caused by Waves in Through-water Photogrammetry, Photogrammetric Record, 11(66), 745-753.
Gruen, A., 1985. Adaptive least squares correlation: a powerful image matching technique. South African Journal of Photogrammetry, Remote Sensing and Cartography, 14(3), 175-187.
Kao, H.M., Ren, H., Lee, C.S., Chang, C.P., Yen, J.Y., and Lin, T.H., 2009. Determination of shallow water depth using optical satellite images. International Journal of Remote Sensing, 30(23), 6241-6260.
Legleiter, C. J., and Brandon T. Overstreet., 2012. Mapping gravel bed river bathymetry from space. Journal of Geophysical Research: Earth Surface, 117(F4).
Lewis, J. P. ., 1995. Fast normalized cross-correlation. In Vision interface 10(1), 120-123.
Lowe, D G., 1999. Object recognition from local scale-invariant features. In International Conference on Computer Vision, Corfu, Greece, 2, 1150-1157.
Ma, S., Tao, Z., Yang, X., Yu, Y., Zhou, X., and Li, Z., 2014. Bathymetry retrieval from hyperspectral remote sensing data in optical-shallow water. IEEE Transactions on Geoscience and Remote Sensing, 52(2), 1205-1212.
Murase T, Tanaka M, Tani T, Yuko M, Ohkawa N, Ishiguro S, Suzuki Y, Kayanne H, Yamano H, 2008. A photogrammetric correction procedure for light refraction effects at a two-medium boundary. Photogrammetric Engineering and Remote Sensing 74(9), 1129-1136.
Pittman, S., Christenson, J., Caldow, C., Menza, C., and Monaco, M., 2007. Predictive mapping of fish species richness across shallow-water seascapes in the Caribbean. Ecological Modeling, 204(1), 9-21.
Sohn, H. G., Park, C. H., and Chang, H., 2005. Rational function model‐ based image matching for digital elevation models. The Photogrammetric Record, 20(112), 366-383.
Westaway, R.M., Lane, S.N., and Hicks D.M., 2001. Remote Sensing of Clear-Water, Shallow, Gravel-Bed Rivers using Digital Photogrammetry. Photogrammetric Engineering & Remote Sensing, 67(1), 1271-1281.
Wilson, M. F. J., O′Connell, B., Brown, C., Guinan, J. C., and Grehan, A. J., 2007. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Marine Geodesy, 30(1), 3-35.
指導教授 黃智遠(Chih-Yuan Huang) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明