博碩士論文 104356002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.94.196.192
姓名 林威(Wei-Lin)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 MBR薄膜生物處理系統於綜合性工業區污水處理廠實廠運轉案例研析
(Membrane bioreactors for treatment industrial park sewerage system case study on operation of wastewater treatment plant)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討
★ 非接觸式光學監測混凝系統技術之發展★ 以光學影像連續監測銅廢水化學沉降之技術發展
★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例
★ 石門水庫分層取水對於前加氯與混凝成效之影響★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析
★ 地表水中氨氮之生物急毒性研究★ 水足跡盤查分析與節水策略-以某印刷電路板軟板廠為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 論文研究以綜合性工業區污水經MBR薄膜生物處理系統產水水質為研究對象。產水水質長期實驗檢測結果顯示,因MBR薄膜生物處理系統主要功能乃過濾篩除水中懸浮固體並藉此去除非溶解性化學需氧量但對溶解性化學需氧量平均去除率未達50%,另對污水中重金屬去除率亦呈現不穩定降除結果。
為提升綜合性工業區MBR薄膜生物處理系統對化學需氧量、重金屬去除率,先執行MBR薄膜生物處理系統與同廠原傳統生物處理系統中近似處理流程化學需氧量及溶解性化學需氧量去除效率檢測比對,並鑑別出兩系統差異處理單元化學混凝膠凝加藥單元並推論具補強化學需氧量與重金屬去除率功能,另藉由實驗室瓶杯模擬實驗驗證假設,蒐集各階段運轉測試與實驗結果評估尋求改善方針,
故冀望藉由MBR薄膜生物處理系統處理綜合性工業區污水,首先需針對納管廠商及進廠水質源頭管控減少造成膜管污堵物質及高濃度水質進廠絕對是MBR系統實廠正常運作關鍵因素。且絕無一套處理系統可對任何污染水質完全有效去除,研究結果顯示綜合性工業區MBR薄膜生物處理系統至少需搭配化學混凝膠凝加藥反應單元,另對進廠水質特性需再配置其它處理系統方能使MBR薄膜生物處理系統優點完全有效發揮。
摘要(英) The purpose of this paper study was to investigate the effluent of membrane bioreactors for treatment industrial park sewerage system. Long-term experimental results show that the main function of membrane bioreactors is to remove the suspended solids in the wastewater and by the way remove the insoluble chemical oxygen demand, but the average removal rate of dissolved chemical oxygen demand is less than 50% and the removal rate of heavy metals in sewage also showed unstable results.
To enhance the industrial park sewerage system membrane bioreactors for chemical oxygen demand, heavy metal removal rate, the first implementation of membrane bioreactors and the traditional biological treatment system similar process of chemical oxygen demand and dissolved chemical oxygen removal efficiency detection and comparison, and to identify the two systems of different treatment unit chemical coagulation-flocculation dosing reaction unit with chemical oxygen demand and heavy metal removal rate function, and by the simulated Jar tests to verify the hypothesis, Collecting the whole operation test and experimental result evaluation to seek improvement policy.
It is hoped that by membrane bioreactors to deal with industrial park sewerage system wastewater, the first need for the industrial park manufacturers pre-treatment processes and into the membrane bioreactors raw wastewater quality control to reduce the formation of membrane fouling substances and high concentrations of raw wastewater into the plant is absolutely the key factor of membrane bioreactors smooth operation. And no treatment system can be completely effective for any pollutions to remove from the raw wastewater, the results show that membrane bioreactors for treatment industrial park sewerage system at least with chemical coagulation-flocculation dosing reaction unit, and investigate the other into the plant wastewater characteristics need to configure other wastewater treatment unit with the membrane bioreactors can make the full advantage of processing function.
關鍵字(中) ★ 綜合性工業區污水
★ MBR薄膜生物處理系統
★ 懸浮固體
★ 溶解性化學需氧量
★ 重金屬
★ 化學混凝膠凝加藥反應
關鍵字(英) ★ industrial park sewerage system wastewater
★ membrane bioreactors
★ suspended solids
★ dissolved chemical oxygen demand
★ heavy metal
★ chemical oagulation-flocculation dosing reaction unit
論文目次 中文摘要.. ........................................... i
英文摘要............................................. ii
誌謝................................................. iv
目錄 ..................................................v
圖目錄.............................................. viii
表目錄................................................ix
第一章 研究緣起與目的....................................1
1.1研究緣起.........................................1
1.2研究目的.........................................3
1.3研究流程.........................................3
第二章 文獻回顧.........................................6
2.1 MBR系統簡介..................................... 6
2.1.1 MBR薄膜生物處理系統配置型式..................8
2.1.2薄膜材質分類................................10
2.2 MBR系統的操作影響因子與常見問題...................11
2.2.1 操作影響因子...............................12
2.2.2 積垢成因...................................15
2.2.3 積垢控制..................................20
2.3 溶解性化學需氧量(SCOD) .........................22
2.3.1胞外聚合物EPS (Extracellular Polymetric Substances) .......22
2.3.2可溶性微生物產物SMP(Soluble Microbial Products)..... 23
2.3.3 MBR薄膜生物處理系統對溶解性化學需氧量去除率探討24
2.3.4 親水性與疏水性物質對薄膜積垢影響............ 24
2.4 化學混凝與膠凝................................. 25
2.4.1混凝原理. ................................. 25
2.4.2 膠凝原理.................................. 27
2.4.3沉降原理................................... 28
2.4.4影響混凝膠凝關鍵因子........................ 29
第三章 研究與實驗方法.................................. 30
3.1污水處理廠基本資料............................... 30
3.1.1產業結構及廢水特性現況...................... 30
3.1.2 全廠處理流程簡介.......................... .31
3.2傳統生物處理系統.............................. .32
3.3實驗廠址- MBR薄膜生物處理系統................... 35
3.4實驗設計...................................... .41
3.5 瓶杯模擬實驗.................................. 43
3.6 實驗水質分析................................... 44
3.6.1實驗樣品採樣模式........................... 44
3.6.2實驗分析項目與檢測分析方法.................. 44
3.6.3主要實驗儀器與設備......................... .45
3.6.4實驗藥品.................................. 45
3.6.5實驗數據之確認............................. 46
第四章 結果與討論..................................... 47
4.1 MBR薄膜生物處理系統運轉產水水質探討..................47
4.1.1 MBR薄膜生物處理系統功測結果與參數調整階段....48
4.1.2 MBR薄膜生物處理系統正式運轉結果.............51
4.2不同處理系統化學需氧量去除率探討..................56
4.2.1總化學需氧量去除率分析... ...................57
4.2.2溶解性化學需氧量去除率分析...................58
4.3化學混凝膠凝對溶解性化學需氧量去除率之探討.........59
4.4 MBR系統重金屬去除率.............................63
第五章 結論與建議.......................................67
5.1 結論.......................................... 67
5.2 建議…………………………………………………………..…................. 68
第六章 參考文獻........................................ 71
參考文獻 [1]林敬傑,「薄膜程序處理及回收薄膜生物反應槽(MBR)出流水之研究」,國立中央大學環境工程研究所碩士論文(2007)
[2] Stephenson, T., Judd, S., and Brindle, K., (2000) "Membrane Bioreactors forWastewater Treatment", IWA Publishing London.
[3]Simon Judd,「THE MBR BOOK,Principles and Apppplications of Membrance Bioreactors in Water and Wastewater Treatment」,(2006)
[4]台灣水環境再生協會,「活性污泥膜濾法(MBR)技術與應用」,(2009)
[5]朱敬平,「薄膜單元於廢水回收之應用」,中興社環境工程研究中心,(1995)
[6]Judd, S. and Jefferson, B. (2003) Membranes for industrial wastewater recovery and re-use, Elsevier, Oxford.
[7]陳依旻,「薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究」,國立中央大學環境工程研究所碩士論文(2011)
[8]Berthold Ginder and Krauth "Rplacement of separation-result hollow fiber modules".Water science technology 38(4-5), 383-393(1998)
[9]范姜仁茂、莊連春、曾迪華、廖述良、游勝傑、梁德明,「薄膜生物反應器(MBR)於廢水處理之技術評析」,工業污染防治,109 期, (2009)。
[10] Mulder, M. (2000) Basic Principles of Membrane Technology. Kluwer Academic Publishers, Dordrecht.
[11] Jiang, T., Kennedy, M.D., Guinzbourg, B.F., Vanrolleghem, P.A. and Schippers, J.C. (2005) Optimising the operation of a mbr pilot plant by quantitative analysis of the membrane fouling mechanism. Water Sci. Technol., 51, 19–25.
[12] Wicaksana, F., Fane, A.G. and Chen, V. (2006) Fibre movement induced by bub- bling using submerged hollow fibre membranes. J. Membrane Sci., in press.
[13]陳彥伯、施佩君,「生物污泥胞外聚合物之萃取及銅吸附效能評估」,崑山科技大學環境工程系專題研究報告,(2008)
[14] Dufresne, R., Lebrun, R.E. and Lavallee, H.C. (1997) Comparative study on fluxes and performances during papermill wastewater treatment with membrane bioreac- tor. Can. J. Chem. Engng., 75, 95–103.
[15] Le-Clech, P., V. Chen, and T. A. G. Fane,“Fouling in Membrane Bioreactors Used in Wastewater Treatment,” Journal of Membrane Science, 284, pp. 17-53(2006).
[16] Zhang, J., Chua, H.C., Zhou, J. and Fane, A.G. (2006) Factors affecting the mem- brane performance in submerged membrane bioreactors. J. Membrane Sci., (Submitted).
[17]Chang, S. and Fane, A.G. (2002) Filtration of biomass with laboratory-scale sub- merged hollow fibre modules – effect of operating conditions and module configur-ation. J. Chem. Technol. Biotechnol., 77, 1030–1038.
[18] Field, R.W., Wu, D., Howell, J.A. and Gupta, B.B. (1995) Critical flux concept for microfiltration fouling. J. Membrane Sci., 100, 259–272.
[19] Howell, J.A. (1995) Subcritical flux operation of microfiltration. J. Membrane Sci.,107, 165–171.
[20] Kwon, D.Y. and Vigneswaran, S. (1998) Influence of particle size and surface charge on critical flux of crossflow microfiltration. Water Sci. Technol., 38, 481–488.
[21] 歐陽嶠輝教授「下水道工程學」第五版,長松文化,(2008)
[22] Holbrook, R.D., Higgins, M.J., Murthy, S.N., Fonseca, A.D., Fleischer, E.J., Daigger, G.T., Grizzard, T.J., Love, N.G. and Novak, J.T. (2004) Effect of alum addition on the per- formance of submerged membranes for wastewater treatment. Water Env. Res., 76, 2699–2702.
[23] Park, D., Lee, D.S. and Park, J.M. (2005a) Continuous biological ferrous iron oxi- dation in a submerged membrane bioreactor. Water Sci. Technol., 51, 59–68.
[24] Kim, J.S. and Lee, C.H. (2003) Effect of powdered activated carbon on the per- formance of an aerobic membrane bioreactor: comparison between cross-flow and submerged membrane systems. Water Env. Res., 75, 300–307.
[25] Li, Y.Z., He, Y.L., Liu, Y.H., Yang, S.C. and Zhang, G.J. (2005c) Comparison of the filtration characteristics between biological powdered activated carbon sludge and activated sludge in submerged membrane bioreactors. Desalination, 174, 305–314.
[26] Yoon, S.H., Collins, J.H., Musale, D., Sundararajan, S., Tsai, S.P., Hallsby, G.A., Kong, J.F., Koppes, J. and Cachia, P. (2005) Effects of flux enhancing polymer on the characteristics of sludge in membrane bioreactor process. Water Sci. Technol., 51, 151–157.
[27] Flemming, H.C. and Wingender, J. (2001) Relevance of microbial extracellular polymeric substances (epss) – part i: Structural and ecological aspects. Water Sci. Technol., 43, 1–8.
[28]Cho, B.D. and Fane, A.G. (2002) Fouling transients in nominally sub-critical flux operation of a membrane bioreactor. J. Membrane Sci., 209, 391–403.
[29] Liu XM,Sheng GP,Luo HW ,Zhang F,Yuan Sj,Xu J,Zeng RJ,Wu JG,Yu HQ Contribution of extracellular polymeric substances(EPS)to the sludge aggregation .Environ Sci Technol, 2010,44(11)
:4355-4360
[30]Laspidou CS Ritmann BE.A unified theory for extracellular polymeric substances,soluble microbial products,and active inert biomass Water Res,2002 36(11):2711-2720
[31]Nielsen,P.H.;Jahn,A.and Palmgren,R.(1997) Conceptual model for production and composition of exopolymers in biofilms. Water science technology36,11-19
[32]Rosenberger, S., Evenblij, H., te Poele, S., Wintgens, T. and Laabs, C. (2005) The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes -six case studies of different European research groups. J. Membrane Sci., 263, 113–126.
[33]維基百科
[34]陳思穎,「原水水質對UF薄膜積垢影響」,國立交通大學環境工程研究所,(2009)
[35]黃正賢,「水處理工程」第三版,曉園出版社,(1992)
[36]黃馨儀,「廢水處理常用化學藥劑應用手冊」,經濟部工業局,台北(1993)
[37]呂金泉,「污水處理廠規劃設計及操作維護技術手冊」第二版,曉園出版社,(1992)
[38]GE原廠ZeeWeed500薄膜操作訓練簡報
指導教授 秦靜如(Ching-Ju Chin) 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明