博碩士論文 104423001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.140.188.95
姓名 簡敬忠(Ching-Chung Chien)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 以科技準備度探討個人化通知與方式探討消費者接受通知之意願
(Use Technology Readiness to Explore Consumers′Intention of Accept the Push Notifications with Personalized and Intrusive Formula)
相關論文
★ 網站設計探討—以國內外連鎖飯店集團為例★ 智慧型手機使用者介面與消費者態度之關聯
★ 零售業全通路策略分析 -以Family Mart為例★ 應用服務藍圖及顧客旅程優化汽車租賃業之服務流程: 以某汽車租賃業為例
★ 顧客對折扣促銷的評價-探討商店定價策略、促銷語意線索與折扣深度對消費者認知的影響★ 網路拍賣中外部線索的一致性:在不同的資訊不對稱程度下,起始價格以及賣方聲譽對於拍賣結果影響之探討。
★ 影響金融服務業之多重通路使用者評估通路整合性的因素★ 影響網路口碑行為意圖之因素分析
★ 在多通路環境中,實體通路的存在如何影響顧客決策★ 混合情緒操控與間接體驗產品途徑對消費者之影響-以創新產品為主
★ 服務業不同廣告型式的效果如何受消費者性別及代言人類型而改變★ 消費者於多通路環境下之跨通路搭便車行為之決定因素
★ 如何撰寫較好的網路口碑★ 探討線上環境中互動與故事對廣告效果之影響
★ 不同決策特質與搜尋時間壓力下部落格設計與使用者滿意度之探討★ 主購社群關係與主購經驗分享對網路合購行為因素影響之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於行動裝置普及,推播通知具有可以針對目標客群進行訊息傳遞的特性,更可以設定在特定時間傳遞訊息,成為了零售商及服務提供者與消費者溝通的利器。但消費者特徵對新科技的接受程度不一致,本研究探討了影響消費者接受推播通知的因素,以及分析侵入式的推播通知,訊息內容的個人化程度 (深度 ╳ 廣度) 與消費者感知 (感知犧牲、感知有用,愉悅) 的關係,是否受消費者的科技準備度調節。因此,本研究先使用集群分析法,依據受測者的科技準備度回答分為兩類,科技準備度積極型 (n=77),科技準備度消極型 (n=170),總計 247 份有效樣本,並進一步使用階層式迴歸進行分析。研究結果顯示,科技準備度消極型,在個人化深且寬時,低科技準備度與感知犧牲呈現正相關。此外,在個人化淺且窄與個人化淺且寬時,消費者的科技準備度則會與感知犧牲呈現負相關。科技準備度積極型,在侵入式的推播通知時,消費者的科技準備度與感知有用呈負相關。此外,在個人化深且寬時,其科技準備度與愉悅亦呈現正向關係。
摘要(英) Push notifications can deliver messages to target consumers, at specific times, and become a
communication bridge among retailers, service providers and consumers. However, not all
consumers are willing to accept this service. The study explores how customers′ technology readiness
influence customers′ perception (perceived sacrifice, perceived usefulness, pleasure) and accept
notifications when using different personalized (depth ╳ breadth) and intrusive formula. Therefore,
the study used cluster analysis regarding technology readiness to categorize into two groups: positive
technology readiness (n=77) and negative technology readiness (n=170). And then we conducted a
hierarchical regression for each group. The findings show that the negative technology readiness
would increase perceived sacrifice of their notifications through a combination of high depth and
narrow breadth of personalization. But notifications with low depth would decrease perceived
sacrifice, regardless of their personalization breadth. On the other hand, for positive technology
readiness would increase pleasure, notifications with high depth and narrow breadth. And invasive
push notification would reduce perceived usefulness.
關鍵字(中) ★ 推播通知
★  科技準備度
★  侵入式
★  個人化
關鍵字(英)
論文目次 中文摘要……………………………………………………………………………………….i

英文摘要………………………………………………………………………………………ii

誌謝…………………………………………………………………………………………...iii

目錄…………………………………………………………………………………………...iv

圖目錄………………………………………………………………………………………...vi

表目錄………………………………………………………………………………………..vii

一、 緒論 ....................................................................................................................... 1

1-1 研究背景 ............................................................................................................ 1

1-2 研究動機與目的 ................................................................................................ 3

二、 文獻探討................................................................................................................ 5

2-1. 推播通知 (Push Notification) ............................................................................ 5

2-2. 消費者的感知價值 ............................................................................................ 8

2-2-1 感知犧牲 (Perceived Sacrifice) .............................................................. 9

2-2-2 感知有用 (Perceived Usefulness) ......................................................... 10

2-2-3 愉悅 (Pleasure) .................................................................................... 11

2-3. 科技準備度 (Technology Readiness, TR) ........................................................ 13

2-4. 個人化 (Personalization) ................................................................................. 16

2-4-1 個人化對感知犧牲的影響 (Perceived sacrifice) .................................. 17

2-4-2 個人化對感知有用的影響 (Perceived Usefulness) .............................. 17




v



2-4-3 個人化對愉悅的影響 (Pleasure) ......................................................... 18

三、 研究方法.............................................................................................................. 19

3-1. 研究架構 .......................................................................................................... 19

3-2. 研究假說 .......................................................................................................... 19

3-3. 實驗情境 .......................................................................................................... 26

3-4. 實驗步驟 .......................................................................................................... 30

3-5. 測量方法 .......................................................................................................... 32

四、 研究結果.............................................................................................................. 38

4-1. 樣本資料分析 .................................................................................................. 38

4-2. 信度分析 .......................................................................................................... 39

4-3. 效度分析 .......................................................................................................... 40

4-4. 敘述性統計 ...................................................................................................... 43

4-5. 操弄檢定 .......................................................................................................... 44

4-6. 假說驗證 .......................................................................................................... 45

五、 結論與建議 .......................................................................................................... 71

5-1. 研究發現 .......................................................................................................... 71

5-2. 管理意涵 .......................................................................................................... 73

5-3. 研究限制與未來研究方向 ............................................................................... 74

參考文獻 ............................................................................................................................. 75

附錄ㄧ、實驗情境畫面 ...................................................................................................... 85






vi



圖目錄 List of Figures
圖 3- 1 研究架構 .................................................................................................. 19

圖 3- 2 目標商品的搜尋結果 .............................................................................. 27

圖 3- 3 個人化深且窄 .......................................................................................... 27

圖 3- 4 個人化深且寬 .......................................................................................... 28

圖 3- 5 個人化淺且窄 .......................................................................................... 28

圖 3- 6 個人化淺且寬 .......................................................................................... 28

圖 3- 7 實驗步驟與流程說明 .............................................................................. 31

圖 4- 1 集群分析…………………………………………………………………..46







vii



表目錄 List of Tables
表 4- 1 信度分析 .................................................................................................. 39

表 4- 2KMO 與 Bartlett 檢定 ............................................................................... 40

表 4- 3 因素分析 .................................................................................................. 40

表 4- 4 依變數之敘述統計 .................................................................................. 43

表 4- 5 操弄變相之獨立樣本 T 檢定 .................................................................. 44

表 4- 6 通知個人化深且窄 ╳ 高科技準備度.................................................... 47

表 4- 7 通知個人化深且窄 ╳ 低科技準備度 .................................................. 48

表 4- 8 通知個人化深且寬 ╳ 高科技準備度.................................................... 49

表 4- 9 通知個人化深且寬 ╳ 低科技準備度.................................................... 49

表 4- 10 通知個人化淺且窄 ╳ 高科技準備度 ................................................. 50

表 4- 11 通知個人化淺且窄 ╳ 低科技準備度 ................................................. 51

表 4- 12 通知個人化淺且寬 ╳ 高科技準備度 ................................................. 52

表 4- 13 通知個人化淺且寬 ╳ 低科技準備度 .................................................. 52

表 4- 14 侵入式 ╳ 高科技準備度 .................................................................... 53

表 4- 15 侵入式 ╳ 低科技準備度 .................................................................... 54

表 4- 16 通知個人化深且窄 ╳ 高科技準備度 .................................................. 55

表 4- 17 通知個人化深且窄 ╳ 低科技準備度 .................................................. 55

表 4- 18 通知個人化深且寬 ╳ 高科技準備度 .................................................. 56

表 4- 19 通知個人化深且寬 ╳ 低科技準備度 .................................................. 57

表 4- 20 通知個人化淺且窄 ╳ 高科技準備度 .................................................. 58




viii



表 4- 21 通知個人化淺且窄 ╳ 低科技準備度 .................................................. 58

表 4- 22 通知個人化淺且寬 ╳ 高科技準備度 .................................................. 59

表 4- 23 通知個人化淺且寬 ╳ 低科技準備度 .................................................. 60

表 4- 24 侵入式 ╳ 高科技準備度 ..................................................................... 61

表 4- 25 侵入式 ╳ 低科技準備度 ..................................................................... 61

表 4- 26 通知個人化深且窄 ╳ 高科技準備度 .................................................. 62

表 4- 27 通知個人化深且窄 ╳ 低科技準備度 .................................................. 63

表 4- 28 通知個人化深且寬 ╳ 高科技準備度 .................................................. 64

表 4- 29 通知個人化深且寬 ╳ 低科技準備度 .................................................. 64

表 4- 30 通知個人化淺且窄 ╳ 高科技準備度 .................................................. 65

表 4- 31 通知個人化淺且窄 ╳ 低科技準備度 .................................................. 66

表 4- 32 通知個人化淺且寬 ╳ 高科技準備度 .................................................. 67

表 4- 33 通知個人化淺且寬 ╳ 低科技準備度 .................................................. 67

表 4- 34 侵入式 ╳ 高科技準備度 ..................................................................... 68

表 4- 35 侵入式 ╳ 低科技準備度 ..................................................................... 69

表 4- 36 推播通知接受度之迴歸分析(1)............................................................. 70

表 4- 37 推播通知接受度之迴歸分析(2)............................................................. 70
參考文獻 英文參考文獻

[1]. Agarwal, R., & Prasad, J. (1998). A conceptual and operational definition of personal
innovativeness in the domain of information technology. Information Systems Research, 9(2),
204-215.
[2]. Aguirre, E., Mahr, D., Grewal, D., de Ruyter, K., & Wetzels, M. (2015). Unraveling the
personalization paradox: The effect of information collection and trust-building strategies on
online advertisement effectiveness. Journal of Retailing, 91(1), 34-49.
[3]. Aguirre, E., Roggeveen, A. L., Grewal, D., & Wetzels, M. (2016). The personalization-privacy
paradox: implications for new media. Journal of Consumer Marketing, 33(2), 98-110.
[4]. Altuna, O. K., & Konuk, F. A. (2009). Understanding consumer attitudes toward mobile
advertising and its impact on consumers′ behavioral intentions: A cross-market comparison of
United States and Turkish consumers. International Journal of Mobile Marketing, 4(2), 43-51.
[5]. Andrews, M., Goehring, J., Hui, S., Pancras, J., & Thornswood, L. (2016). Mobile promotions:
A framework and research priorities. Journal of Interactive Marketing, 34, 15-24.
[6]. Ansari, A., & Mela, C. F. (2003). E-customization. Journal of Marketing Research, 40(2), 131-
145.
[7]. Basheer, A. A. A., & Ibrahim, A. A. (2010). Mobile marketing: Examining the impact of trust,
privacy concern and consumers′ attitudes on intention to purchase. International Journal of
Business and Management, 5(3), 28.
[8]. Bauer, H. H., Reichardt, T., Barnes, S. J., & Neumann, M. M. (2005). Driving consumer
acceptance of mobile marketing: A theoretical framework and empirical study. Journal of
Electronic Commerce Research, 6(3), 181.
[9]. Bleier, A., & Eisenbeiss, M. (2015). The importance of trust for personalized online
advertising. Journal of Retailing, 91(3), 390-409.
[10]. Brehm, J. W. (1966). A theory of psychological reactance. Academic Press, New York.
[11]. Bruner, G. C., & Kumar, A. (2007). Attitude toward location-based advertising. Journal of Interactive Advertising, 7(2), 3-15.
[12]. Chau, P. Y. (1996). An empirical assessment of a modified technology acceptance
model. Journal of Management Information Systems, 13(2), 185-204.
[13]. Chen, J. V., Ross, W., & Huang, S. F. (2008). Privacy, trust, and justice considerations for
location-based mobile telecommunication services. Info: Journal of Policy, Regulation and
Strategy for Telecommunications, Information and Media, 10(4), 30-45.
[14]. Chen, L. D. (2008). A model of consumer acceptance of mobile payment. International Journal
of Mobile Communications, 6(1), 32-52.
[15]. Chernev, A. (2003). When more is less and less is more: The role of ideal point availability
and assortment in consumer choice. Journal of Consumer Research, 30(2), 170-183.
[16]. Cho, Chang-Hoan and Hongsik, J. Cheon (2004). “Why Do People Avoid Advertising on the
Internet,” Journal of Advertising, 33 (4): 89-97.
[17]. Criteo (2015), “All Testimonials,” (accessed February 26, 2015), [available at
http://www.criteo.com/case-studies/].
[18]. Ducoffe, R. H. (1995). How consumers assess the value of advertising. Journal of Current
Issues & Research in Advertising, 17(1), 1-18.
[19]. Ducoffe, R. H., & Curlo, E. (2000). Advertising value and advertising processing. Journal of
Marketing Communications, 6(4), 247-262.
[20]. Duff, B. R., & Faber, R. J. (2011). Missing the mark. Journal of Advertising, 40(2), 51-62.
[21]. Edwards, S. M., Li, H., & Lee, J. H. (2002). Forced exposure and psychological reactance:
Antecedents and consequences of the perceived intrusiveness of pop-up ads. Journal of
Advertising, 31(3), 83-95.
[22]. eMarketer (2014a), “Marketers Respond to Consumer Demand for Personali- zation,”
(accessed February 2, 2015), [available at http://www.emarketer. com/Article/Marketers-
Respond-Consumer-Demand-Personalization/ 1010618].
[23]. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk
facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
[24]. Feng, X., Fu, S., & Qin, J. (2016). Determinants of consumers’ attitudes toward mobile
advertising: The mediating roles of intrinsic and extrinsic motivations. Computers in Human Behavior, 63, 334-341.
[25]. Ferreira, J. B., da Rocha, A., & da Silva, J. F. (2014). Impacts of technology readiness on
emotions and cognition in Brazil. Journal of Business Research, 67(5), 865-873.
[26]. Gadzheva, M. (2007). Privacy concerns pertaining to location-based services. International
Journal of Intercultural Information Management, 1(1), 49-57.
[27]. Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: an
integrated model. MIS Quarterly, 27(1), 51-90.
[28]. Ghani, N. A., & Sidek, Z. M. (2009). Personal information privacy protection in e-
commerce. WSEAS Transactions on Information Science and Applications, 6(3), 407-416.
[29]. Goldfarb, A., & Tucker, C. (2011). Online display advertising: Targeting and
obtrusiveness. Marketing Science, 30(3), 389-404.
[30]. Guild, Bill (2013), “2013 Choicestream Survey: Consumer Opinions on Online Advertising &
Audience Targeting.” (accessed February 18, 2015), [available at
http://choicestream.com/2013 Staging/wp-content/uploads/ 2013/10/2013-Survey.pdf].
[31]. Häubl, G., & Trifts, V. (2000). Consumer decision making in online shopping environments:
The effects of interactive decision aids. Marketing Science, 19(1), 4-21.
[32]. Helft, M., & Vega, T. (2010). Retargeting ads follow surfers to other sites. The New York Times,
8-11.
[33]. Huang, R.Y. (2012). The identification, ranking and categorization of mobile marketing
success factors. International Journal of Mobile Marketing, 7(2), 86–97.
[34]. Hunter, A., Jacobsen, M., Talens, R., & Winders, T. (2010). When money moves to digital,
where should it go? identifying the right media-placement strategies for digital display. white
paper, comScore and ValueClick Media (September), (accessed June 19, 2013), [available
at www. recruemedia. com/downloads/comscore2010. pdf].
[35]. Iyengar, S. S., & Lepper, M. R. (2000). When choice is demotivating: Can one desire too much
of a good thing. Journal of Personality and Social Psychology, 79(6), 995.
[36]. Kalyanaraman, S., & Sundar, S. S. (2006). The psychological appeal of personalized content
in web portals: does customization affect attitudes and behavior. Journal of
Communication, 56(1), 110-132.
[37]. Kim, H. W., Chan, H. C., & Gupta, S. (2007). Value-based adoption of mobile internet: an
empirical investigation. Decision Support Systems, 43(1), 111-126.
[38]. Kim, Y. J., & Han, J. (2014). Why smartphone advertising attracts customers: A model of Web
advertising, flow, and personalization. Computers in Human Behavior, 33, 256-269.
[39]. King, N. J. (2008). When mobile phones are RFID-Equipped-finding EU-US solutions to
protect consumer privacy and facilitate mobile commerce. Michigan Telecommunications and
Technology Law Review, 15(1), 107.
[40]. King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance
model. Information & Management, 43(6), 740-755.
[41]. Kleijnen, M., De Ruyter, K., & Wetzels, M. (2007). An assessment of value creation in mobile
service delivery and the moderating role of time consciousness. Journal of Retailing, 83(1),
33-46.
[42]. Köster, M., Rüth, M., Hamborg, K. C., & Kaspar, K. (2015). Effects of personalized banner
ads on visual attention and recognition memory. Applied Cognitive Psychology, 29(2), 181-
192.
[43]. Kreuter, M. W., & Wray, R. J. (2003). Tailored and targeted health communication: strategies
for enhancing information relevance. American Journal of Health Behavior, 27(1), S227-S232.
[44]. Lambrecht, A., & Tucker, C. (2013). When does retargeting work? Information specificity in
online advertising. Journal of Marketing Research, 50(5), 561-576.
[45]. Larivière, B., Joosten, H., Malthouse, E. C., van Birgelen, M., Aksoy, P., Kunz, W. H., & Huang,
M. H. (2013). Value fusion: the blending of consumer and firm value in the distinct context of
mobile technologies and social media. Journal of Service Management, 24(3), 268-293.
[46]. Lee, H. H., & Hill, J. T. (2013). Moderating effect of privacy self-efficacy on location-based
mobile marketing. International Journal of Mobile Communications, 11(4), 330-350.
[47]. Lee, J. M., & Rha, J. Y. (2016). Personalization–privacy paradox and consumer conflict with
the use of location-based mobile commerce. Computers in Human Behavior, 63, 453-462.
[48]. Lewis, W., Agarwal, R., & Sambamurthy, V. (2003). Sources of influence on beliefs about
information technology use: An empirical study of knowledge workers. MIS Quarterly, 657-
678.
[49]. Liljander, V., Gillberg, F., Gummerus, J., & Van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer
Services, 13(3), 177-191.
[50]. Lin, C. H., Shih, H. Y., Sher, P. J., & Wang, Y. L. (2005). Consumer adoption of e-service:
Integrating technology readiness with the technology acceptance model. Proceedings of the
Technology Management: A Unifying Discipline for Melting the Boundaries. 31 July-4 Aug.
Taiwan: 483- 489.
[51]. Lin, J. S. C., & Chang, H. C. (2011). The role of technology readiness in self-service
technology acceptance. Managing Service Quality: An International Journal, 21(4), 424-444.
[52]. Lin, K. Y., & Lu, H. P. (2011). Why people use social networking sites: An empirical study
integrating network externalities and motivation theory. Computers in Human Behavior, 27(3),
1152-1161.
[53]. Lin, T. T., Paragas, F., & Bautista, J. R. (2016). Determinants of mobile consumers′ perceived
value of location-based advertising and user responses. International Journal of Mobile
Communications, 14(2), 99-117.
[54]. Malheiros, M., Jennett, C., Patel, S., Brostoff, S., & Sasse, M. A. (2012, May). Too close for
comfort: A study of the effectiveness and acceptability of rich-media personalized advertising.
In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 579-
588). ACM.
[55]. Merisavo, M., Kajalo, S., Karjaluoto, H., Virtanen, V., Salmenkivi, S., Raulas, M., &
Leppäniemi, M. (2007). An empirical study of the drivers of consumer acceptance of mobile
advertising. Journal of Interactive Advertising, 7(2), 41-50.
[56]. Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology
anxiety on consumer use and experiences with self-service technologies. Journal of Business
Research, 56(11), 899-906.
[57]. Mick, D. G., & Fournier, S. (1998). Paradoxes of technology: Consumer cognizance, emotions,
and coping strategies. Journal of Consumer Research, 25(2), 123-143.
[58]. Montgomery, A. L., & Smith, M. D. (2009). Prospects for Personalization on the
Internet. Journal of Interactive Marketing, 23(2), 130-137.
[59]. Muk, A. (2007). Consumers’ intentions to opt in to SMS advertising: a cross-national study of
young Americans and Koreans. International Journal of Advertising, 26(2), 177-198.
[60]. Mukherjee, A., & Hoyer, W. D. (2001). The effect of novel attributes on product
evaluation. Journal of Consumer Research, 28(3), 462-472.
[61]. Mun, Y. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: self-
efficacy, enjoyment, learning goal orientation, and the technology acceptance
model. International Journal of Human-Computer Studies, 59(4), 431-449.
[62]. Murthi, B. P. S., & Sarkar, S. (2003). The role of the management sciences in research on
personalization. Management Science, 49(10), 1344-1362.
[63]. Okazaki, S., Katsukura, A., & Nishiyama, M. (2007). How mobile advertising works: The role
of trust in improving attitudes and recall. Journal of Advertising Research, 47(2), 165-178.
[64]. Okazaki, S., Li, H., & Hirose, M. (2009). Consumer privacy concerns and preference for
degree of regulatory control. Journal of Advertising, 38(4), 63-77.
[65]. Parasuraman, A. (2000). Technology Readiness Index (TRI) a multiple-item scale to measure
readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320.
[66]. Pavlou, P. A., & Stewart, D. W. (2000). Measuring the effects and effectiveness of interactive
advertising: A research agenda. Journal of Interactive Advertising, 1(1), 61-77.
[67]. Peterson, T. (2013). eBay opens up its data for ad targeting--Follows lead of Amazon, Google
and Facebook. Adweek (April 8).
[68]. Phelps, J. E., D′Souza, G., & Nowak, G. J. (2001). Antecedents and consequences of
consumer privacy concerns: An empirical investigation. Journal of Interactive
Marketing, 15(4), 2-17.
[69]. Price, L. L., & Ridgway, N. M. (1983). Development of a scale to measure use
innovativeness. Advances in Consumer Research, 10, Richard P. Bagozzi and Alice Tybout,
eds. Ann Arbor, MI: Association for Consumer Research, 679–84.
[70]. Reeve, J. (1989). The interest-enjoyment distinction in intrinsic motivation. Motivation and
Emotion, 13(2), 83-103.
[71]. Sengupta, S. (2013). What you didn’t post, Facebook may still know. New York Times, (March
25).
[72]. Shankar, V., & Balasubramanian, S. (2009). Mobile marketing: a synthesis and
prognosis. Journal of Interactive Marketing, 23(2), 118-129.
[73]. Sheth, J. N., Newman, B. I., & Gross, B. L. (1991). Consumption values and market choices:
Theory and Applications, 16-74. Cincinnati: South-Western Publishing Company.
[74]. Shin, W., & Lin, T. T. C. (2016). Who avoids location-based advertising and why? Investigating
the relationship between user perceptions and advertising avoidance. Computers in Human
Behavior, 63, 444-452.
[75]. Simola, J., Kuisma, J., Öörni, A., Uusitalo, L., & Hyönä, J. (2011). The impact of salient
advertisements on reading and attention on web pages. Journal of Experimental Psychology:
Applied, 17(2), 174.
[76]. Sinkovics, R. R., Pezderka, N., & Haghirian, P. (2012). Determinants of consumer perceptions
toward mobile advertising—a comparison between Japan and Austria. Journal of Interactive
Marketing, 26(1), 21-32.
[77]. Sledgianowski, D., & Kulviwat, S. (2009). Using social network sites: The effects of
playfulness, critical mass and trust in a hedonic context. Journal of Computer Information
Systems, 49(4), 74-83.
[78]. Solano-Lorente, M., Martínez-Caro, E., & Cegarra-Navarro, J. G. (2013). Designing a
framework to develop eLoyalty for online healthcare services. Electronic Journal of
Knowledge Management, 11(1), 107-115.
[79]. Son, J. Y., & Kim, S. S. (2008). Internet users′ information privacy-protective responses: a
taxonomy and a nomological model. Mis Quarterly, 32(2), 503-529.
[80]. Son, M., & Han, K. (2011). Beyond the technology adoption: Technology readiness effects on
post-adoption behavior. Journal of Business Research, 64(11), 1178-1182.
[81]. Souza, R. V. D., & Luce, F. B. (2005). Avaliação da aplicabilidade do technology readiness
index (tri) para a adoção de produtos e serviços baseados em tecnologia. Revista de
Administração Contemporânea, 9(3), 121-141.
[82]. Sun, H. (2010). Sellers′ trust and continued use of online marketplaces. Journal of the
Association for Information Systems, 11(4), 182.
[83]. Sun, H., & Zhang, P. (2006). The role of moderating factors in user technology
acceptance. International Journal of Human-Computer Studies, 64(2), 53-78.
[84]. Sun, Y., Wang, N., Shen, X. L., & Zhang, J. X. (2015). Location information disclosure in location-based social network services: Privacy calculus, benefit structure, and gender
differences. Computers in Human Behavior, 52, 278-292.
[85]. Sundar, S. S. (2008a). The MAIN model: A heuristic approach to understanding technology
effects on credibility. In M. J. Metzger, & A. J. Flanagin (Eds.), Digital media, youth, and
credibility,72-100. Cambridge, MA: The MIT Press.
[86]. Sundar, S. S., & Marathe, S. S. (2010). Personalization versus customization: The importance
of agency, privacy, and power usage. Human Communication Research, 36(3), 298-322.
[87]. Tam, K. Y., & Ho, S. Y. (2005). Web personalization as a persuasion strategy: An elaboration
likelihood model perspective. Information Systems Research, 16(3), 271-291.
[88]. Tam, K. Y., & Ho, S. Y. (2006). Understanding the impact of web personalization on user
information processing and decision outcomes. MIS Quarterly, 865-890.
[89]. Teo, T. S., Lim, V. K., & Lai, R. Y. (1999). Intrinsic and extrinsic motivation in Internet
usage. Omega, 27(1), 25-37.
[90]. Tsang, M. M., Ho, S. C., & Liang, T. P. (2004). Consumer attitudes toward mobile advertising:
An empirical study. International Journal of Electronic Commerce, 8(3), 65-78.
[91]. Tucker, C. E. (2012). The economics of advertising and privacy. International Journal of
Industrial Organization, 30(3), 326-329.
[92]. Unni, R., & Harmon, R. (2007). Perceived effectiveness of push vs. pull mobile location based
advertising. Journal of Interactive Advertising, 7(2), 28-40.
[93]. Urban, G. L., Liberali, G., MacDonald, E., Bordley, R., & Hauser, J. R. (2013). Morphing
banner advertising. Marketing Science, 33(1), 27-46.
[94]. Van der Heijden, H. (2004). User acceptance of hedonic information systems. MIS Quarterly,
695-704.
[95]. Van Doorn, J., & Hoekstra, J. C. (2013). Customization of online advertising: The role of
intrusiveness. Marketing Letters, 24(4), 339-351.
[96]. Van Slyke, C., Shim, J. T., Johnson, R., and Jiang, J. (2006). Concern for information privacy
and online consumer purchasing. Journal of the Association for Information Systems, 7(6),
415-444.
[97]. Venkatesh, V. (1999). Creation of favorable user perceptions: exploring the role of intrinsic motivation. MIS Quarterly, 239-260.
[98]. Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on
interventions. Decision Sciences, 39(2), 273-315.
[99]. Vize, R., Coughlan, J., Kennedy, A., & Ellis-Chadwick, F. (2013). Technology readiness in a
B2B online retail context: An examination of antecedents and outcomes. Industrial Marketing
Management, 42(6), 909-918.
[100]. Walczuch, R., Lemmink, J., & Streukens, S. (2007). The effect of service employees’
technology readiness on technology acceptance. Information & Management, 44(2), 206-215.
[101]. Wehmeyer, K. (2007). Mobile ad intrusiveness-The effects of message type and
situation. BLED 2007 Proceedings, 6.
[102]. Wei, K., & Ram, J. (2016). Perceived usefulness of podcasting in organizational
learning: The role of information characteristics. Computers in Human Behavior, 64, 859-870.
[103]. White, T. B., Zahay, D. L., Thorbjørnsen, H., & Shavitt, S. (2008). Getting too personal:
Reactance to highly personalized email solicitations. Marketing Letters, 19(1), 39-50.
[104]. Wong, C. H., Tan, G. W. H., Hew, T. S., & Ooi, K. B. (2016). Can mobile TV be a new
revolution in the television industry. Computers in Human Behavior, 55, 764-776.
[105]. Wu, K. W., Huang, S. Y., Yen, D. C., & Popova, I. (2012). The effect of online privacy
policy on consumer privacy concern and trust. Computers in Human Behavior, 28(3), 889-
897.
[106]. Xu, H., Oh, L. B., & Teo, H. H. (2009). Perceived effectiveness of text vs. multimedia
location-based advertising messaging. International Journal of Mobile Communications, 7(2),
154-177.
[107]. Yang, H., Zhou, L., & Liu, H. (2010). A comparative study of American and Chinese
young consumers’ acceptance of mobile advertising: A structural equation modeling
approach. International Journal of Mobile Marketing, 5(1), 60-76.
[108]. Zhou, T., & Li, H. (2014). Understanding mobile SNS continuance usage in China from
the perspectives of social influence and privacy concern. Computers in Human Behavior, 37,
283-289.
中文參考文獻
[1]. 2015 年 Visa 電子商務消費者調查 (2015)。 Visa 電子商務調查:93%民眾使
用網路購物。Available online:
http://www.visa.com.tw/aboutvisa/mediacenter/NR_tw_171115.html (Download:
2017/6/8)。

[2]. 動腦雜誌 (2016) 。【數位】行動商務戰開打 App 開啟品牌新契機。Available
online: https://www.dcplus.com.tw/marketing-knowledge/starter/73655 (Download:
2016/6/3)。

[3]. 動腦雜誌 (2016) 。亞太電子商務引爆點來臨:網購行為行動裝置首度超越
PC。Available
online:http://www.brain.com.tw/news/articlecontent?ID=43873&sort=#apWC5s9R
(Download: 2016/6/12)。
指導教授 謝依靜(Yi-Ching Hsieh) 審核日期 2017-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明