參考文獻 |
英文文獻
〔1〕 Hu, M., & Liu, B. (2004, August). Mining and summarizing customer reviews. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 168-177). ACM.
〔2〕 Huang, S. L., & Cheng, W. C. (2015). Discovering Chinese sentence patterns for feature-based opinion summarization. Electronic Commerce Research and Applications, 14(6), 582-591.
〔3〕 Ku, L. W., Ho, H. W., & Chen, H. H. (2009). Opinion mining and relationship discovery using CopeOpi opinion analysis system. Journal of the Association for Information Science and Technology, 60(7), 1486-1503.
〔4〕 Liu, B. (2010). Sentiment Analysis and Subjectivity. Handbook of natural language processing, 2, 627-666.
〔5〕 Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation.
〔6〕 Su, Q., Xu, X., Guo, H., Guo, Z., Wu, X., Zhang, X., ... & Su, Z. (2008, April). Hidden sentiment association in chinese web opinion mining. In Proceedings of the 17th international conference on World Wide Web (pp. 959-968). ACM.
〔7〕 Van Rijsbergen, C. J. (1979). Information Retrieval (2nd ed.). London: Butterworths.
〔8〕 Wang, S. M., & Ku, L. W. (2016). ANTUSD: A Large Chinese Sentiment Dictionary. In LREC.
〔9〕 Wang, W., Xu, H., & Wan, W. (2013). Implicit feature identification via hybrid association rule mining. Expert Systems with Applications, 40(9), 3518-3531.
〔10〕 Yang, D., & Powers, D. M. (2005, January). Measuring semantic similarity in the taxonomy of WordNet. In Proceedings of the Twenty-eighth Australasian conference on Computer Science-Volume 38 (pp. 315-322). Australian Computer Society, Inc..
〔11〕 Zhai, Z., Liu, B., Xu, H., & Jia, P. (2011, February). Clustering product features for opinion mining. In Proceedings of the fourth ACM international conference on Web search and data mining (pp. 347-354). ACM.
〔12〕 Zhan, J., Loh, H. T., & Liu, Y. (2009). Gather customer concerns from online product reviews–A text summarization approach. Expert Systems with Applications, 36(2), 2107-2115.
〔13〕 Zhang, W., Xu, H., & Wan, W. (2012). Weakness Finder: Find product weakness from Chinese reviews by using aspects based sentiment analysis. Expert Systems with Applications, 39(11), 10283-10291.
中文文獻
〔1〕 董振東, 董強, & 郝長伶. (2007). 知網的理論發現. 中文信息學報, 21(4), 3-9.
〔2〕 劉群, & 李素建. (2002). 基於《知網》的辭彙語義相似度計算. International Journal of.
〔3〕 魏韡, 向陽, & 陳千. (2011). 中文文本情感分析綜述. 計算機應用, 31(12), 3321-3323.
網路資料
〔1〕 Fashion Guide華人第一時尚美妝傳媒:FG商品試用評鑑,2017年4月30日,取自http://www.fashionguide.com.tw/Beauty/08/Index.html?from=fgindex。
〔2〕 jieba: 結巴中文分詞。2017年6月10日,取自https://github.com/fxsjy/jieba。
〔3〕 Myles Anderson: 2013 Study: 79% Of Consumers Trust Online Reviews As Much As Personal Recommendations. From http://searchengineland.com/2013-study-79-of-consumers-trust-online-reviews-as-much-as-personal-recommendations-164565
〔4〕 中央研究院:CKPI中文斷詞系統,2017年6月10日,取自http://ckipsvr.iis.sinica.edu.tw/。
〔5〕 中央研究院:中文知識表達系統 – 廣義之網,2017年6月10日,取自http://ckip.iis.sinica.edu.tw/CKIP/ehownet_reg.htm。
〔6〕 林志傑:JIEBA 結巴中文斷詞。2017年6月10日,取自https://speakerdeck.com/fukuball/jieba-jie-ba-zhong-wen-duan-ci。
〔7〕 唐鳳:萌典。2017年6月30日,取自https://www.moedict.tw/about.html。
〔8〕 酷哥康:消費者心態:倚重網路評論,特別高興或生氣時會留下意見,SmartM 新網路科技。2017年5月20日,取自https://www.smartm.com.tw/Article/32353037cea3。 |