博碩士論文 104423046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:54.234.190.237
姓名 林哲渝(Zheyu Lin)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 複數模糊類神經網路在多目標財經預測
(Complex Neural Fuzzy System for Multi-Objective Finance Prediction)
相關論文
★ 變數選擇在智慧型系統與應用之研究★ 智慧型系統之參數估測研究─一個新的DE方法
★ 合奏學習式智慧型系統在分類問題之研究★ 複數模糊類神經系統於多類別分類問題之研究
★ 融入後設認知策略的複數模糊認知圖於分類問題之研究★ 分類問題之研究-以複數型模糊類神經系統為方法
★ 智慧型差分自回歸移動平均模型於時間序列預測之研究★ 計算智慧及複數模糊集於適應性影像處理之研究
★ 智慧型模糊類神經計算模式使用複數模糊集合與ARIMA模型★ Empirical Study on IEEE 802.11 Wireless Signal – A Case Study at the NCU Campus
★ 自我建構式複數模糊ARIMA於指數波動預測之研究★ 資料前處理之研究:以基因演算法為例
★ 針對文字分類的支援向量導向樣本選取★ 智慧型區間預測之研究─以複數模糊類神經、支持向量迴歸、拔靴統計為方法
★ 複數型模糊類神經系統及連續型態之多蟻群演化在時間序列預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2020-8-30以後開放)
摘要(中) 本研究使用複數的模糊集合(Complex fuzzy set)取代模糊類神經網路(Fuzzy neural network)中的模糊集合,在演算法上以粒子群最佳化演算法(Particle Swarm Optimization, PSO)為基礎提出了改良的多群粒子群演算法(Multi-group particle Swarm Optimization, PSO),並且結合遞迴最小平方估計法(Recursive least squares estimator, RLSE)成一個複合式的演算法,此外在模型輸入的選擇上基於夏農資訊熵(Shannon Entropy)提出了特徵選取方法,在本篇論文中將運用特徵選取、複數模糊類神經網路以及混合式的機器學習演算法於股票以及匯率上時間序列的預測。本篇論文使用的特徵選取方法是透過計算特徵對於目標所提供的資訊量,並以一套選取策略針對特徵提供的資訊量多寡進行特徵的挑選。複數模糊集合比傳統一般的模糊集合具有更佳的解釋能力,運用於模糊類神經網路中能夠傳遞更大量的資訊,增加模型預測的效能,並且能夠讓模型能夠同時預測多達6個目標。在模型學習階段,改良式的多群粒子群最佳化演算法能夠比原本的粒子群最佳化演算法更快速的收斂,並且增加找到全局最小化的機率,另外與遞迴最小平方估計法結合能夠減少多群粒子群最佳化演算法需要學習的參數數量,增加多群粒子群最佳化演算法的效能,並且使用遞迴最小平方估計法以計算的方式找出最佳的近似解,而不是透過長時間的訓練,能夠減少模型整體的訓練時間。本篇研究使用股票以及匯率做為多目標的實驗,從實驗結果顯示本論文所使用的特徵選取、模型以及機器學習演算法都有良好的結果。
摘要(英) In this study, complex fuzzy sets are used to replace fuzzy sets in neural fuzzy systems. Based on the particle swarm optimization(PSO) algorithm, an improved multi-group particle swarm optimization(MGPSO) algorithm is proposed, and combined with the well-known recursive least squares estimation (RLSE) into a hybrid algorithm, called the MGPSO-RLSE learning method. In addition, a feature selection method based on Shannon entropy is presented to select useful information by significant features which will be used as model inputs in modeling. In this study, the feature selection, complex neural fuzzy system (CNFS) with Takagi-Sugeno (T-S) If-Then rules and hybrid machine learning algorithm are used for finance time series prediction of stock price and exchange rate. For the CNFS, the parameters of If-parts are evolved by the MGPSO while the parameters of Then-parts are updated by the RLSE. Complex fuzzy sets have better ability to interpret the set-element membership description than regular real-valued fuzzy sets. They can be used in neural fuzzy networks to transmit more information, increasing the prediction performance of model. Moreover, due to CFSs used in the proposed CNFS, the model is capable to deal with up to six targets simultaneously. In the model learning stage, the MGPSO, compared to one single swarm of PSO, can increase the probability of finding the optimal solution, with fast learning convergence. In addition, the combination of the RLSE to the MGPSO can lessen the burden of machine learning by the MGPSO alone. Several real-world data sets of stock prices and exchange rates have been used to test the proposed approach in the experiments for multi-objective prediction. Through the experimental results, the proposed approach has shown good performance.
關鍵字(中) ★ 複數模糊集合
★ 複數模糊類神經網路
★ 粒子群最佳化演算法
★ 多群粒子群最佳化演算法
★ 遞迴最小平方估計法
★ 特徵選取
★ 夏農資訊熵
★ 股票時間序列
★ 匯率時間序列
關鍵字(英) ★ Complex fuzzy set
★ Complex fuzzy neural system
★ Multi-group particle swarm optimization algorithm
★ Recursive least squares estimation
★ Feature selection
★ Shannon entropy
★ Time series prediction
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 1
第一章 緒論 2
1.1 研究背景與目的 2
1.2 研究方法 3
1.3 論文架構 4
第二章 文獻探討 5
2.1 特徵選取 5
2.2 模糊集合理論與模糊規則 6
2.3 複數模糊集合理論 10
2.4 模糊類神經網路 11
2.5機器學習演算法 12
2.5.1 粒子群最佳化演算法 13
2.5.2 遞迴最小平方估計法 14
第三章 系統設計與架構 16
3.1 特徵選取 16
3.2 多目標複數模糊類神經模型計算 20
3.3 複合式機器學習演算法 24
3.3.1 多群粒子群最佳化演算法 24
3.3.2 遞迴最小平方估計法 25
3.4 研究整體流程 26
第四章 實驗實作與結果 27
4.1 實驗1:單目標股票指數預測-TAIEX(1998) 27
4.2 實驗2:雙目標股票指數預測-TAIEX(2000)、DJIA(2000) 32
4.3 實驗3: 四個目標匯率預測- GBP/USD、CAD/USD、CHF/USD、DEM/USD 38
第五章 實驗結果討論 48
第六章 結論 50
6.1結論 50
6.2未來研究方向 51
參考文獻 53
附錄 57
實驗一-學習後參數 57
實驗二-學習後參數 58
實驗三-學習後參數 59
參考文獻
[1] K. J. Astrom and B. Wittenmark, Adaptive Control. New York:Addison-Wesley, 1989.
[2] Jing-Rong Chang, Liang-Ying Wei, Ching-Hsue Cheng, “A hybrid ANFIS model based on AR and volatility for TAIEX forecasting,” Applied Soft Computing, Volume 11, Issue 1, Pages 1388-1395, January 2011.
[3] S.M. Chen, “Forecasting enrollments based on fuzzy time-series,” Fuzzy Sets Systems, Volume 81, Issue 3, Pages 311-319, August 1996.
[4] S.M. Chen, G.M.T. Manalu, S.C. Shih, T.W. Sheu, H.C. Liu, “A new method for fuzzy forecasting based on two-factors high-order fuzzy-trend logical
relationship groups and particle swarm optimization techniques,” Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Anchorage, Alaska, USA, October 2011.
[5] O. D. Crisalle, R. A. Soper, D. A. Mellichamp and D. E. Seborg,“Adaptive Control of Photolithography,” AIChE J., Volume 38, Page 1-14, 1992.
[6] Aleksandar Đokić, Srđan Jović, “Evaluation of agriculture and industry effect on economic health by ANFIS approach,” Physica A: Statistical Mechanics and its Applications, Volume 479, Pages 396–399, August 2017.
[7] R. C. Eberhart & J. Kennedy, “A new optimizer using particle swarm theory,” Proc. IEEE International Conf. on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, 1995.
[8] Jin Gou, Yu-Xiang Lei, Wang-Ping Guo, Cheng Wang, Yi-Qiao Cai, Wei Luo, “A novel improved particle swarm optimization algorithm based on individual difference evolution,” Applied Soft Computing, Volume 57, Pages 468–481, August 2017.
[9] Najeh Ben Guedria, “Improved accelerated PSO algorithm for mechanical engineering optimization problems,” Applied Soft Computing, Volume 40, Pages 455–467, March 2016.
[10] T.J. Hsieh, H.F. Hsiao, W.C. Yeh, “Forecasting stock markets using wavelet transforms and recurrent neural networks: an integrated system based on
artificial bee colony algorithm,” Applied Soft Computing, Volume 11, Issue 2, Pages 2510-2525, March 2011.
[11] Jyh-Shing Roger Jang, “ANFIS: Adaptive-network-based fuzzy inference system,” IEEE Transactions on Systems, Man, and Cybernetics, Volume 23, Issue 3, Jun 1993.
[12] Iman Kamkar, Sunil Kumar Gupta, Dinh Phung, Svetha Venkatesh, “Stable feature selection for clinical prediction: Exploiting ICD tree structure using Tree-Lasso,” Journal of Biomedical Informatics, Volume 53, Pages 277-290, February 2015.
[13] Chunshien Li and Tai-Wei Chiang, “Complex neuro fuzzy ARIMA forecasting-a New approach using complex fuzzy sets,” IEEE Transactions On Fuzzy Systems, vol. 21, NO. 3, June 2013.
[14] Chunshien Li, Tsunghan Wu, “Adaptive fuzzy approach to function approximation with PSO and RLSE,” Expert Systems with Applications Volume 38, Issue 10, Pages 13266-13273, September 2011.
[15] Huijuan Lu, Junying Chen, Ke Yan, Qun Jin, Yu Xue, Zhigang Gao, “A hybrid feature selection algorithm for gene expression data classification, “ Neurocomputing, Volume 256, Pages 56–62, September 2017.
[16] E.H.Mamdani and S. Assilian, ”An experiment in linguistic synthesis with a fuzzy logic controller,” International Journal of Man-Machine Studies, Vol. 7, No. 1, pp. 1-13, 1975.
[17] Yong MAO, Daoying PI, Yuming LIU, Youxian SUN, “Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification,” Chinese Journal of Chemical Engineering, Volume 14, Issue 1, Pages 65-72, February 2006.
[18] Leila Naderloo, Hossein Javadikia, Mostafa Mostafaei, “Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS,” Renewable and Sustainable Energy Reviews, Volume 70, Pages 56–64, April 2017.
[19] Daniel Ramot, Ron Milo, Menahem Friedman, Abraham Kandel, “Complex fuzzy sets,” IEEE Transactions on Fuzzy System, Volume. 10, NO. 2, April 2002.
[20] B.W. Silverman, “Density Estimation for Statistics and Data Analysis,” Chapman & Hall/CRC. Page 7–11, 1986.
[21] C.E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal, volume 27, Page.379-423, 623-656, July, October, 1948.
[22] T. Takagi & M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man, and Cybernetics, 15,116–132. ,1985.
[23] H.K. Yu, “Weighted fuzzy time-series models for TAIEX forecasting,” Physica A: Statistical Mechanics and its Applications, Volume 349, Issues 3–4, Pages 609-624, April 2005.
[24] Lean Yua, Kin Keung Lai, Shouyang Wang, “Multistage RBF neural network ensemble learning for exchange rates forecasting,” Neurocomputing, Volume 71, Issues 16–18, Pages 3295–3302, October 2008.
[25] L. A. Zadeh, “Fuzzy sets,” Information and Control 8, 338-353 ,1965.
[26] (2017). Website of Yahoo Finance: TAIEX index [Online] Available: http://finance.yahoo.com/q?s=^TWII
[27] (2017). Website of Yahoo Finance: DJIA index [Online] Available: http://finance.yahoo.com/q?s=^DJI
[28] (2017). Website of PACIFIC Exchange Rate Service: GBP/USD exchange rate [Online] Available: http://fx.sauder.ubc.ca/data.html
[29] (2017). Website of PACIFIC Exchange Rate Service: CAD/USD exchange rate [Online] Available: http://fx.sauder.ubc.ca/data.html
[30] (2017). Website of PACIFIC Exchange Rate Service: CHF/USD exchange rate [Online] Available: http://fx.sauder.ubc.ca/data.html
[31] (2017). Website of PACIFIC Exchange Rate Service: DEM/USD exchange rate [Online] Available: http://fx.sauder.ubc.ca/data.html
[32] 國立中央大學資訊管理所李俊賢教授, 研究生訓練課程內容2015-2017, 紀錄筆記。 (未發表)
指導教授 李俊賢(Chunshien Li) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明