博碩士論文 104451016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.222.67.251
姓名 游士弘(Shi-Hong You)  查詢紙本館藏   畢業系所 企業管理學系在職專班
論文名稱 應用資料科學方法提昇國防裝備可靠度之研究-以防空系統為例
(Reliability Improvement of National Defense Equipments using Data Science Based Method-A Case of Air Defense Systems)
相關論文
★ 企業流程為核心的食品產業運籌體系規劃:低溫物流部份★ 以企業流程方法規劃整體飛航後勤維修體系之研究
★ 成衣產業導入ERP運籌管理方案之個案研究★ 光電產業試產基地之生產最佳化模式:以光投影機為例
★ TFT LCD產業獲利因素之探討★ 科技事業進行合併/讓售之決策過程與成效之個案探討
★ 企業治理、風險及遵循解決方案導入之個案研究-以職責分離資訊系統為例★ 品質機能展開與多準則決策於設備開發應用
★ ERP導入品質因素對IFRS轉換專案之影響★ ERP投資金額對服務品質及導入後IT治理目標之分析
★ ERP 導入問題對專案的影響★ IFRS轉換對員工退休金計畫影響
★ IFRS轉換問題對IFRS效益的影響★ 電子產業新產品開發參考模式之發展
★ 企業資訊方案行銷歷程之探討-以MES為例★ 半導體封測廠生產力分析模型與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著世界各國武器科技的進步及作戰型態的改變,從現今作戰場景與戰術思維的觀點來看,没有空防即没有所謂的國防,防空系統已成為主導戰場優勢的關鍵性武器之一,然而防空戰備的能力得以有效的發揮,則端賴平時裝備妥善的維持與良好後勤維保的運作,方能捍衛領空,殲敵於千里之外;惟現行國軍針對國防裝備所制定的維保模式,雖沿習美軍後維制度採行O(單位段)、I(野戰段)、D(基地段)三段五級的維修階層策略,依照過去維修經驗常數,制定各項裝備定更、定檢件的更換頻次與時程,並以系統使用時數為基準的預防保養制度(Time Based Preventive Maintenance, TBPM),然而對於架構設計複雜且精密的防空系統而言,若無法有效預測各系統元件失效的資訊,進行預防性修護的作業,恐難以維持系統妥善,進而影響部隊戰力及作戰任務的遂行。本研究以國軍現役短程防空系統偵測模組總成歷史維修及耗用料紀錄為基礎,透過資料科學分析方法中,描述性統計(Descriptive Statistics)、單因子變異數分析(One-way ANOVA)、皮爾森積差相關分析(Pearson Product-Moment Correlation)及時間序列分析(Time Series Analysis)等技術,分析各元件間失效頻次、關聯性及優序性之成因,再藉由美軍武器系統可靠度分析理論,擷取總成項下部分元件之串並聯網絡進行可靠度數據分析,並探討其後勤效益性與最佳優化模式,據以對國軍各層級維修廠庫及維保人員,在修護作業實務上,提出有效的預防維修模式,以期降低系統重複拆解的次數及工時,並且提昇整體系統可靠度。
摘要(英) Regarding today`s battle situation and tactical concept, the development of weapon technologies and changes of operational patterns in the world have resulted in a conclusion of “No Air Defense, No National Defense”. Air Defense System has become one of the critically advantageous weapon systems to lead the battlefield. In fact, air defense capabilities rely on the availability rate maintaining and logistics managing, for the purpose of guarding the air space and destroying the enemy thousands of miles away. The current maintenance module for national defense equipment of R.O.C. Armed Forces was established in accordance with logistical maintenance mechanism of U.S. Army. That provides for three levels - Organizational, Intermediate and Depot - and five echelons of maintenance categories, developing the replacing frequency and timeline for periodical examining items of materiel and following the utility-hour-based Time Based Preventive Maintenance (TPBM). However, for the complicatedly and precisely structural designed Air Defense System, it is hard to maintain the availability rate if failing to forecast information on malfunctioned items of systems, and to execute preventive maintaining operations. It will also significantly affect on the war fighting functions and on combat tasks execution. This research is based upon maintenance and repairing history and material consumption record of active Short Range Air Defense Systems detection module assembly, and using data science analysis, for instances Description Statistics, One-way ANOVA, Pearson Product-Moment Correlation, and Time Series Analysis, to analyze malfunction frequencies among items, their connections and priorities of causes. After that, according to the reliability analysis theory of the U.S. military weapon system, the research capture part string of assembly items and link the internet conducting reliability data analysis. Then discuss logistical efficiency and optimization model. Finally, the expectation of this research is to provide preventive maintenance standards on practices for maintainers in levels and echelons of repairing and maintenance shops for escalating system reliability through lowering repeatedly dissembling frequency and its working hours.
關鍵字(中) ★ 國防裝備
★ 維修階層
★ 預防性修護
★ 資料科學分析方法
★ 系統可靠度
關鍵字(英) ★ Defense equipment
★ repairing and maintenance levels and echelons
★ preventive maintenance
★ scientific measures of data analysis
★ system reliability
論文目次 摘 要 i
ABSTRACTii
誌 謝 iii
目 錄 iv
圖 目 錄 vi
表 目 錄 vii
第一章 緒 論1
1.1 研究背景與目的1
1.2 研究範圍與進行架構2
第二章 文獻回顧4
2.1 國防裝備的定義4
2.1.1 定義說明4
2.1.2 裝備主要類型區分5
2.1.3 裝備系統階層架構6
2.1.4 國防裝備具備之特性8
2.2 國防裝備的管理9
2.2.1 現行國防裝備之維保層級(echelon)劃分9
2.2.2 各維修層級之作業流程10
2.3 整體後勤支援架構16
2.3.1 整體後勤支援的定義16
2.3.2 整體後勤支援之執行策略17
2.4 應用資料科學方法提昇工業或軍事裝備可靠度之相關文獻21
2.4.1 資料科學方法21
2.4.2 系統可靠度22
2.4.3 資料科學方法應用於工業或軍事裝備可靠度提昇之相關文獻27
2.5 小 結29
第三章 研究模型發展30
3.1 研究構想及方法30
3.2 模型發展30
3.2.1 裝備耗用料及維修歷史紀錄32
3.2.2 武器系統維修資料倉儲建立32
3.2.3 資料科學數據分析32
3.2.4 可靠度數據分析33
3.2.5 探討成因分析33
3.2.6 提出預防維修建議與策略33
3.3 小 結34
第四章 數據分析結果與討論35
4.1 資料科學數據分析35
4.1.1 編碼說明35
4.1.2 次數分配表35
4.1.3 描述性統計39
4.1.4 單因子變異數分析40
4.1.5 相關分析41
4.1.6 時間序列分析42
4.2 系統可靠度數據分析43
4.2.1 可靠度方塊圖模式建構43
4.2.2 平均故障時隔44
4.2.3 後勤效益性分析46
4.2.4 系統可靠度優化模式48
4.3 小 結51
第五章 結論與後續研究建議54
5.1 結論54
5.2 後續研究建議54
參考文獻56
附錄一59
附錄二61
附錄三62
附錄四64
參考文獻 英文部分
Badiru, A. B.,Thomas, M. U.(2009). Handbook of military industrial engineering, CRC Press ,LCC, U.S.
Blanchard, B. S.(1992). Logistics Engineering and Management, Hall ,Inc.,A Simon &Schuster Company Englewood Cliffs ,New Jersey, U.S.
Blanchard, B. S.,& Fabrycky, W. J.(1998). Systems Engineering and Analysis, Prentice-Hill ,Inc., Englewood Cliffs , New Jersey, U.S.
Chen, C. L. P.,& Zhang, C. Y.(2014).“Data-intensive applications, challenges, techniques and technologies: A survey on Big Data”, Information Sciences Vol.275, pp.314–347.
Coria, V. H.,Maximov S., Rivas-Dávalos, F.,Melchor, C. L.,Guardado J. L.(2014). “Analytical method for optimization of maintenance policy based on available system failure data”, Reliability Engineering and System Safety, Vol.150, pp.55–63.
Department of Defense, U.S.(1988). Electronic Reliability Design Handbook (No. MIL–HDBK–338–1A).
Department of Defense, U.S.(1991). Defense Acquisition Management Policies and Procedures (No. DoD I 5000.2).
Department of Defense,U.S. (2002). Logistic Support Analysis (No. MIL–STD–1388–2B).
Department of Defense,U.S. (2005). DOD GUIDE FOR ACHIEVING :Systems Engineering for Mission Success.
Department of the Air Force,U.S. (2014). Integrated life cycle management (AFPAM 63–128) , Office of the Secretary of the Air Force ,Washington, D.C.
Govil, K. K.(1992).“ A Simple Model for Life-cycle Cost vs Maintainability Function”, Microelectronics and Reliability, Vol.32, pp.269–270.
Jincheng, J.,Ping, J., Guangyu, C.,Tiejiang, Y.,& Fei, X.(2016).“Applicatin of C5.0 algorithm in failure prediction of smart meters”, IEEE Wavelet Active Media Technology and Information Processing , pp.328–333.
Kapur, K. C.,& Lamberson, K. R.(1977). Reliability in Engineering Design, John Wiley and Sons.
Klutke, G.,Kiessler, P. C., & Wortman, M. A.(2015).“A critical look at the bathtub curve ”, IEEE Transactions on Reliability, pp.125–129.
Manary, J. M.(1995). Cost Analysis Strategy Assessment Module , Version 3.01, DSMC Logistics Support Department.
Pang, J. H.(2015).“A New Markov Model of Reliability Assurance and Failure Prediction Using Network Technology”, IEEE Computer Science and Network Technology , pp.776–780.
Rao, S. S.(1993). Reliability–Based Design , McGraw–Hill , N.Y.
Sharma, P.,Kulkarni, S. M., & Yadav, V.(2017).“A simulation based optimization approach for spare parts forecasting and selective maintenance”, Reliability Engineering and System Safety, Vol.168, pp.274–289.
Sherbrooke, C. C.(1968).“ METRIC: A Multi-Echelon Technology for Recoverable Item Control”,Operation Research,Vol.16, pp.122–141.
Siemens PLM Software(2008). LSAR–The missing link for performance based logistics.
Tillman, F. K.,Hwang C. L.,& Kuo, W.(1980). Optimization of Systems Reliability ,Marcel Dekker ,Inc. N.Y.
U.S. Army(2008). Integrated Logistics Support Handbook .
U.S. General Accounting Office ,GAO.(1981). Effectiveness of U.S. forces can be increased through improved weapon system design (Report No. PSAD–81–17).
Woodera, D., Purvis, A., & McWilliam, R.(2017). “Using big-data and surface fitting to improve aircraft safety through the study of relationships and anomalies”, Procedia CIRP, Vol.59, pp.172–177.
Yam, R. C. M.,Tse, P. W., Li, L., & Tu, P.(2001).“Intelligent Predictive Decision Support System for Condition-based Maintenance”, International Journal of Advanced Manufacturing Technology, Vol.17, No. 5, pp.383–391.
Zhao, Z.,Liang, B.,Wang, X., & Lu, W.(2017).“Remaining Useful Life Prediction of Aircraft Engine based on Degradation Pattern Learning”, Reliability Engineering and System Safety, Vol.164, pp.74–83.

中文部分
美國國防部(2000),美國國防部軍語辭典,國防部史政編譯局,台北。
國防部(2009),國軍主要武器系統與裝備系統工程教則,國防部,台北。
國防部(2009),國軍主要武器系統與裝備獲得專案管理教則,國防部,台北。
國防部(2017),國軍武器系統與裝備整體後勤支援教則,國防部,台北。
國防部陸軍司令部(2016),陸軍保修基地作業手冊,陸軍司令部,桃園。
國防部陸軍司令部(2015),陸軍保修教範,陸軍司令部,桃園。
國防部陸軍司令部(2015),陸軍保修連作業手冊,陸軍司令部,桃園。
國防部陸軍司令部(2015),陸軍單位段維保作業手冊,陸軍司令部,桃園。
國家中山科學研究院(2006),整體後勤支援作業手冊,國家中山科學研究院,桃園。
Dhillon, B. S.(1987),系統可靠度工程—設計與操作,趙浡霖譯,科技圖書股份有限公司,台北。
指導教授 呂俊德(Jun-Der Leu) 審核日期 2018-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明