博碩士論文 104521041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.235.107.209
姓名 蔡鳳霖(Feng-Lin Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於多導程心電訊號之無損壓縮演算法與實現
(Efficient Lossless Compression Scheme for Multi-channel ECG Signal and Implementation)
相關論文
★ 即時的SIFT特徵點擷取之低記憶體硬體設計★ 即時的人臉偵測與人臉辨識之門禁系統
★ 具即時自動跟隨功能之自走車★ 離線自定義語音語者喚醒詞系統與嵌入式開發實現
★ 晶圓圖缺陷分類與嵌入式系統實現★ 補償無乘法數位濾波器有限精準度之演算法設計技巧
★ 可規劃式維特比解碼器之設計與實現★ 以擴展基本角度CORDIC為基礎之低成本向量旋轉器矽智產設計
★ JPEG2000靜態影像編碼系統之分析與架構設計★ 適用於通訊系統之低功率渦輪碼解碼器
★ 應用於多媒體通訊之平台式設計★ 適用MPEG 編碼器之數位浮水印系統設計與實現
★ 適用於視訊錯誤隱藏之演算法開發及其資料重複使用考量★ 一個低功率的MPEG Layer III 解碼器架構設計
★ 具有高品質反量化演算的AAC解碼器 之平台式設計★ 適用於第三代行動通訊之最大事後機率演算法發展及渦輪碼解碼器超大型積體電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 心電圖(Electrocardiography)是對於心臟電生理活動的紀錄,也是現今用來診斷心臟疾病的主要方法。隨著長時連續測量多導程心電訊號,伴隨而來的龐大資料將造成傳輸與儲存空間的負擔。有著能夠即時且高壓縮率的多導程心電訊號演算法能夠有效的減少龐大資料所造成的負擔。然而壓縮可分為有損壓縮與無損壓縮。即使現今有損壓縮技術能將失真率控制在可接受的範圍,在醫療診斷上仍可能因失真而造成誤診。對於醫療人員若能提供有效的無損心電訊號壓縮,不但能提升在心臟疾病診斷上的準確度,也便於接下來的應用。
本論文利用多導程線性預測模組來降低導程之間的相關性、變動式線性預測模組來降低導程內的相關性。最後送入自調整的哥倫布編碼來提升整體系統的壓縮率。我們利用MIT-BIH Arrhythmia(MIT-BIH db)[1]、Physikalisch-Technische Bundesanstalt(PTBdb)[2]資料庫來做壓縮效率的評估。MIT-BIH db資料庫包含48組兩導程的心電訊號, PTB db資料庫包含來自290位測試病人的549組12導程心電訊號。結果顯示本論文所提供之壓縮演算法應用在MIT-BIH db資料庫平均壓縮率能達2.809x,應用在 PTB db資料庫平均壓縮率能達到4.073x。到最後我們將此演算法實現在嵌入式系統中。評估壓縮演算法展示遠距醫療的效果。
摘要(英) Electrocardiography is the recording of the heart electrical activity and used to diagnose heart disease nowadays. The diagnosis requires a large amount of time for acquiring enough multi-channel data normally. The storage and transmission of 12 lead ECG data will result in massive cost. With Multi-channel ECG lossless compression which has high compression ratio and capability of real time processing, we can effectively reduce the loading of huge data. However, compression algorithm can divide into lossless an lossy compression. Although data distortion has been controlled in acceptable range, it may cause some misdiagnosis while the diagnosis may occur.
In this thesis, we propose a multi-channel ECG compression technique which has multi-channel linear prediction and adaptive linear prediction technique for removing redundancy in intra-channel and inter channel correlation respectively. Finally, entropy will feed into self-adjust Golomb-Rice codec for increase compression ratio. We evaluate the performance by calculating the compression ratio (CR) with MIT-BIH Arrhythmia(MIT-BIHdb) database[1] and Physikalisch-Technische Bundesanstalt database (PTBdb)[2]. The result shows the average compression ratio of proposed method is 2.809x in MIT-BIH database and 4.073x in PTB database. Finally, we implement proposed algorithm on the embedded development board for demonstrate the result of telemedicine application.
關鍵字(中) ★ 多導程心電訊號
★ 無損壓縮
★ 遠距醫療
★ 線性預測
關鍵字(英) ★ multi-channel ECG signal
★ Lossless compression
★ telemedicine
★ linear prediction
論文目次 致謝 i
摘要 v
Abstract vi
Table of contents vii
List of Figures ix
List of Tables xi
Chapter I Introduction 1
1.1 Background and Motivation 1
1.2 Relative Work 3
1.3 Thesis Organization 6
Chapter II Multi-channel ECG Lossless Compression Encoder 7
2.1 Multi-channel Linear Prediction 8
2.2 Adaptive Linear Prediction 14
2.3 Self-adaptive Golomb-Rice Coding 18
Chapter III Multi-channel ECG Lossless Compression Decoder 21
3.1 Golomb-Rice decoding 22
3.2 Predict Error Recovery 23
3.3 Redundancy Set Recovery 24
Chapter IV Experiment Result 25
4.1 MIT-BIH Arrhythmia Database Evaluation 27
4.2 PTB Database Evaluation 30
4.3 Performance Comparison 32
4.4 Power Consumption Evaluation 33
Chapter V Conclusion 38
Reference 39
參考文獻 [1] G. B.Moody andR. G.Mark, “The impact of the MIT-BIH arrhythmia database.,” IEEE Eng. Med. Biol. Mag., vol. 20, no. 3, pp. 45–50.
[2] “The PTB Diagnostic ECG Database.” [Online]. Available: https://physionet.org/physiobank/database/ptbdb/. [Accessed: 19-Nov-2018].
[3] A.Singh andS.Dandapat, “Block sparsity-based joint compressed sensing recovery of multi-channel ECG signals,” Healthc. Technol. Lett., vol. 4, no. 2, pp. 50–56, Apr.2017.
[4] A.Singh andS.Dandapat, “Exploiting interchannel correlations in multichannel compressed sensing ECG systems,” in 2015 IEEE UP Section Conference on Electrical Computer and Electronics (UPCON), 2015, pp. 1–7.
[5] A.Singh, J. J.Nallikuzhy, andS.Dandapat, “Compressed sensing framework of data reduction at multiscale level for eigenspace multichannel ECG signals,” in 2015 Twenty First National Conference on Communications (NCC), 2015, pp. 1–6.
[6] R. P.Tripathi andG. R.Mishra, “Study of various data compression techniques used in lossless compression of ECG signals,” in 2017 International Conference on Computing, Communication and Automation (ICCCA), 2017, pp. 1093–1097.
[7] R.Tornekar andS.Gajre, “Comparative Study of Lossless ECG Signal Compression Techniques for Wireless Networks,” 2017.
[8] W.-J.Chen, C.-C.Lu, Y.-H.Jiang, andH.-W.Fang, “FPGA design and verification for lossless ECG coding compression,” in 2017 6th International Symposium on Next Generation Electronics (ISNE), 2017, pp. 1–3.
[9] Guei-An Luo, S.-L.Chen, andTing-Lan Lin, “VLSI implementation of a lossless ECG encoder design with fuzzy decision and two-stage Huffman coding for wireless body sensor network,” in 2013 9th International Conference on Information, Communications & Signal Processing, 2013, pp. 1–4.
[10] Q.Zhou, “Study on ECG Data Lossless Compression Algorithm Based on K-means Cluster,” in 2009 ETP International Conference on Future Computer and Communication, 2009, pp. 91–93.
[11] C.-K.Tseng, L.-J.Kau, andW.-Y.Cheng, “A Takagi-Sugeno fuzzy neural network-based predictive coding scheme for lossless compression of ECG signals,” in TENCON 2017 - 2017 IEEE Region 10 Conference, 2017, pp. 1646–1660.
[12] Y.Kamamoto, N.Harada, andT.Moriya, “Interchannel dependency analysis of biomedical signals for efficient lossless compression by MPEG-4 ALS,” in 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, 2008, pp. 569–572.
[13] N. P.Sgouros, I. P.Constantinou, G. K.Loudos, andS. A.Kossida, “Use of the MPEG-4 ALS Architecture and Inter-channel Prediction for Multi-channel ECG Coding,” in 2007 IEEE International Symposium on Signal Processing and Information Technology, 2007, pp. 754–759.
[14] P.Kaewfoongrungsi andD.Hormdee, “The comparison between linear regression derivings of 12-lead ECG signals from 5-lead system and EASI-lead system,” in 2017 17th International Symposium on Communications and Information Technologies (ISCIT), 2017, pp. 1–6.
[15] J. Q.Xue, “Adapting ECG morphology changes from reduced-lead set by specifically trained algorithms for acute ischemia detection,” in 2007 Computers in Cardiology, 2007, pp. 709–712.
[16] “32F429IDISCOVERY - Discovery kit with STM32F429ZI MCU * New order code STM32F429I-DISC1 (replaces STM32F429I-DISCO) - STMicroelectronics.” [Online]. Available: https://www.st.com/en/evaluation-tools/32f429idiscovery.html. [Accessed: 05-Dec-2018].
[17] “華緯生醫.” [Online]. Available: http://www.hwbio.com.tw/EKG_tc.htm. [Accessed: 05-Dec-2018].
[18] F.Chen, Y.Pan, R.Huan, K.-T.Cheng, andK.Li, “Real-time lossless ECG compression for low-power wearable medical devices based on adaptive region prediction,” Electron. Lett., vol. 50, no. 25, pp. 1904–1906, Dec.2014.
[19] Shin-Chi Lai ; Pei-Chen Tail ; Meng-Kun Lee ; Sheau-Fang Lei ; Ching-Hisng Luo, “Prototype System Design of ECG Signal Acquisition with Lossless Data Compression Algorithm Applied for Smart Devices,” in 2018 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), 2018.
[20] T.-H.Tsai andW.-T.Kuo, “An Efficient ECG Lossless Compression System for Embedded Platforms With Telemedicine Applications,” IEEE Access, vol. 6, pp. 42207–42215, 2018.
指導教授 蔡宗漢(Tsung-Han Tsai) 審核日期 2019-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明