博碩士論文 104521066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:52.14.32.113
姓名 林育全(Yu-Chuan Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化鋁銦/氮化鎵高電子遷移率電晶體之製作與高頻特性分析
(Fabrication and Characterization of AlInN/GaN High Electron Mobility Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主題為氮化鋁銦/氮化鋁/氮化鎵(AlInN/AlN/GaN)高電子遷移率電晶體(high electron mobility transistor, HEMT)之製作與高頻特性分析。在元件製作方面,我們製作了閘極長度為0.4 μm之Schottky gate HEMTs。其汲極電流(Idss)可達713 mA/mm,最大轉導(gm,max)可達300 mS/mm,元件崩潰電壓最高可達117 V。在Lg= 0.4 μm,Lgs= 1 μm,Lgd= 2 μm HEMT上,所量得的電流增益截止頻率(fT)可達48.9 GHz,功率增益截止頻率(fmax)可達57.3 GHz,此高頻特性與國際上其他團隊最佳之結果相當。
此論文亦包括建立一個準確之小訊號電路模型之研究成果。我們根據磊晶片各層厚度、介電常數以及元件佈局這三項因素,建立新型的Cold FET外部電容模型,使小訊號電路參數的萃取更符合元件本身的情況,且使得模擬與實際量測的結果更為匹配。此方法亦應用於比較以三甲基鎵與三乙基鎵所成長之元件特性差異。
摘要(英) This thesis aims at fabrication and characterization of high frequency characterisitcs of AlInN/AlN/GaN high electron mobility transistors (HEMTs). In this work, 0.4 μm Schottky-gate HEMTs have been fabricated on epiwafers grown by metal-organic chemical vapor deposition on Si substrates. The devices exhibit Idss of 713 mA/mm, peak transconductance of 300 mS/mm, and breakdown voltage of 117 V. High frequency measurements indicate that the devices have current gain cut-off frequency of 48.9 GHz and power gain cut-off frequency of 57.3 GHz. These results are comparable or better than the best reported results in the literature.
We have also constructed a small signal circuit model for the devices fabricated on epiwafers grown by trimethylgallium (TMG) and triethylgallium (TEG). Based on the thickness of the epitaxial layers, dielectric constant and device layout, a new cold FET model is established for parasitic capacitance. This helps to accurately extract the small signal circuit parameters of the devices as indicated by the good match between the simulated and measured results. This parameter extraction method has been used to compare the difference between devices grown by TMG and TEG.
關鍵字(中) ★ 高電子遷移率電晶體
★ 氮化鋁銦
★ 二維電子氣濃度
★ 電子遷移率
關鍵字(英) ★ HEMT
★ AlInN
★ 2-DEG concentration
★ electron mobility
論文目次 論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 導論 1
1.1 前言 1
1.2 三族氮化物異質結構極化效應 3
1.3 氮化鎵高頻元件發展現況 5
1.4 研究動機與論文架構 8
第二章Schottky HEMTs元件製作與元件特性 9
2.1 磊晶結構設計 9
2.2 Hall量測結果、表面分析與X-射線繞射分析 10
2.3 HEMTs元件製作流程 12
2.4 本章總結 17
第三章 元件量測及分析 18
3.1 元件直流特性分析 18
3.2 元件高頻特性分析 27
3.3 本章總結 29
第四章 氮化鋁銦/氮化鎵異質結構場效電晶體之小訊號模型 30
4.1 高頻量測原理 30
4.2 小訊號電路模型分析 33
4.3 外部元件寄生參數萃取 35
4.3.1 寄生電容參數分析(pinch-off FET) 36
4.3.2 寄生電感、電阻參數分析(forward FET) 40
4.4 內部元件寄生參數萃取 42
4.5 史密斯與極座標圖分析 46
4.6 本章總結 48
第五章 結論與未來展望 49
參考文獻 51
參考文獻 [1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., "High Breakdown Voltage Schottky Rectifier Fabricated on Bulk n-GaN Substrate," Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[2] H. Morkoç, R. Cingolani, and B. Gil, "Polarization Effects in Nitride Semiconductor Device Structures and Performance of Modulation Doped Field Effect Transistors," Solid-State Electronics, vol. 43, pp. 1909-1927, 1999.
[3] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization in Undoped and Doped AlGaN/GaN Heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[4] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., "Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures," Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[5] P. Altuntas, F. Lecourt, A. Cutivet, N. Defrance, E. Okada, M. Lesecq, et al., "Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate," IEEE Electron Device Letters, vol. 36, pp. 303-305, 2015.
[6] S. Bouzid-Driad, H. Maher, N. Defrance, V. Hoel, J. C. De Jaeger, M. Renvoise, et al., "AlGaN/GaN HEMTs on Silicon Substrate with 206-GHz FMAX," IEEE Electron Device Letters, vol. 34, pp. 36-38, 2013.
[7] D. Marti, S. Tirelli, A. R. Alt, J. Roberts, and C. R. Bolognesi, "150-GHz Cutoff Frequencies and 2-W/mm Output Power at 40 GHz in a Millimeter-Wave AlGaN/GaN HEMT Technology on Silicon," IEEE Electron Device Letters, vol. 33, pp. 1372-1374, 2012.
[8] R. C. Fitch, D. E. Walker, A. J. Green, S. E. Tetlak, J. K. Gillespie, R. D. Gilbert, et al., "Implementation of High-Power-Density X-Band AlGaN/GaN High Electron Mobility Transistors in a Millimeter-Wave Monolithic Microwave Integrated Circuit Process," IEEE Electron Device Letters, vol. 36, pp. 1004-1007, 2015.
[9] S. Tirelli, D. Marti, H. Sun, A. R. Alt, J.-F. Carlin, N. Grandjean, et al., "Fully Passivated AlInN/GaN HEMTs with fT / fMAX of 205/220 GHz," IEEE Electron Device Letters, vol. 32, pp. 1364-1366, 2011.
[10] M. L. Schuette, A. Ketterson, B. Song, E. Beam, T.-M. Chou, M. Pilla, et al., "Gate-Recessed Integrated E/D GaN HEMT Technology with fT/fmax >300 GHz," IEEE Electron Device Letters, vol. 34, pp. 741-743, 2013.
[11] B. P. Downey, D. J. Meyer, D. S. Katzer, J. A. Roussos, P. Ming, and G. Xiang, "SiNx/InAlN/AlN/GaN MIS-HEMTs with 10.8 THz.V Johnson Figure of Merit," IEEE Electron Device Letters, vol. 35, pp. 527-529, 2014.
[12] D. Marti, S. Tirelli, V. Teppati, L. Lugani, J.-F. Carlin, M. Malinverni, et al., "94-GHz Large-Signal Operation of AlInN/GaN High-Electron-Mobility Transistors on Silicon with Regrown Ohmic Contacts," IEEE Electron Device Letters, vol. 36, pp. 17-19, 2015.
[13] T. Chuan-Wei, L. Chen-Yi, L. Yi-Wei, and S. S. H. Hsu, "101-GHz InAlN/GaN HEMTs on Silicon with High Johnson′s Figure-of-Merit," IEEE Transactions on Electron Devices, vol. 62, pp. 2675-2678, 2015.
[14] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, pp. 992-994, 2014.
[15] Z. Qi, C. Wanjun, L. Shenghou, Z. Bo, F. Zhihong, C. Shujun, et al., "High Breakdown Voltage InAlN/AlN/GaN HEMTs Achieved by Schottky-Source Technology," pp. 195-198, 2013.
[16] Y. Jiang, Q. Wang, F. Zhang, L. Li, D. Zhou, Y. Liu, et al., "Reduction of Leakage Current by O2 Plasma Treatment for Device Isolation of AlGaN/GaN Heterojunction Field-Effect Transistors," Applied Surface Science, vol. 351, pp. 1155-1160, 2015.
[17] Y. J. Yoon, J. H. Seo, M. S. Cho, H.-S. Kang, C.-H. Won, I. M. Kang, et al., "TMAH-Based Wet Surface Pe-treatment for Reduction of Leakage Current in AlGaN/GaN MIS-HEMTs," Solid-State Electronics, vol. 124, pp. 54-57, 2016.
[18] S. Arulkumaran, G. I. Ng, and S. Vicknesh, "Enhanced Breakdown Voltage with High Johnson′s Figure-of-Merit in 0.3-µm T-gate AlGaN/GaN HEMTs on Silicon by (NH4)2Sx Treatment," IEEE Electron Device Letters, vol. 34, pp. 1364-1366, 2013.
[19] S. L. Zhao, B. Hou, W. W. Chen, M. H. Mi, J. X. Zheng, J. C. Zhang, et al., "Analysis of the Breakdown Characterization Method in GaN-Based HEMTs," IEEE Transactions on Power Electronics, vol. 31, pp. 1517-1527, 2016.
[20] P. Kordos, M. Mikulics, A. Fox, D. Gregusova, K. Cico, J. F. Carlin, et al., "RF Performance of InAlN/GaN HFETs and MOSHFETs with fT × LG up to 21 GHz . µm," IEEE Electron Device Letters, vol. 31, pp. 180-182, 2010.
[21] C. Ostermaier, G. Pozzovivo, J. F. Carlin, B. Basnar, W. Schrenk, Y. Douvry, et al., "Ultrathin InAlN/AlN Barrier HEMT with High Performance in Normally Off Operation," IEEE Electron Device Letters, vol. 30, pp. 1030-1032, 2009.
[22] K. Kunihiro, K. Kasahara, Y. Takahashi, and Y. Ohno, "Microwave Performance of 0.3-µm Gate-Length Multi-Finger AlGaN/GaN Heterojunction FETs with Minimized Current Collapse," Japanese Journal of Applied Physics, vol. 39, pp. 2431-2434, 2000.
[23] T. Han, S. Dun, Y. Lü, G. Gu, X. Song, Y. Wang, et al., "70-nm-Gated InAlN/GaN HEMTs Grown on SiC Substrate with fT/fmax> 160 GHz," Journal of Semiconductors, vol. 37, p. 024007, 2016.
[24] H. W. Then, L. A. Chow, S. Dasgupta, S. Gardner, M. Radosavljevic, V. R. Rao, et al., "High-K Gate Dielectric Depletion-Mode and Enhancement-Mode GaN MOS-HEMTs for Improved OFF-State Leakage and DIBL for Power Electronics and RF Applications," pp. 16.3.1-16.3.4, 2015.
[25] S. Piotrowicz, O. Jardel, E. Chartier, R. Aubry, L. Baczkowski, M. Casbon, et al., "12W/mm with 0.15 µm InAlN/GaN HEMTs on SiC Technology for K and Ka-Bands Applications," pp. 1-3, 2014.
[26] S. D. Nsele, L. Escotte, J. G. Tartarin, and S. Piotrowicz, "Noise Characteristics of AlInN/GaN HEMTs at Microwave Frequencies," pp. 1-4, 2013.
[27] S. Tirelli, D. Marti, L. Lugani, J.-F. Carlin, N. Grandjean, and C. R. Bolognesi, "AlN-Capped AlInN/GaN High Electron Mobility Transistors with 4.5 W/mm Output Power at 40 GHz," Japanese Journal of Applied Physics, vol. 52, p. 08JN16, 2013.
[28] D. M. Geum, J. H. Jang, M. S. Kim, and S. H. Shin, "75 nm T-shaped Gate for In0.17Al0.83N/GaN HEMTs with Minimal Short-Channel Effect," Electronics Letters, vol. 49, pp. 1536-1537, 2013.
[29] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, et al., "InAlN/AlN/GaN HEMTs with Regrown Ohmic Contacts and fT of 370 GHz," IEEE Electron Device Letters, vol. 33, pp. 988-990, 2012.
[30] R. Wang, G. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider, et al., "210-GHz InAlN/GaN HEMTs with Dielectric-Free Passivation," IEEE Electron Device Letters, vol. 32, pp. 892-894, 2011.
[31] D. S. Lee, X. Gao, S. Guo, D. Kopp, P. Fay, and T. Palacios, "300-GHz InAlN/GaN HEMTs with InGaN Back Barrier," IEEE Electron Device Letters, vol. 32, pp. 1525-1527, 2011.
[32] K. D. Chabak, D. E. W. Jr., M. Trejo, A. Crespo, M. Kossler, J. K. Gillespie, et al., "Performance of Strained AlInN/AlN/GaN HEMTs with Si3N4 and Ultra-Thin Al2O3 Passivation," presented at the CS MANTECH, Palm Springs, California, USA, 2011.
[33] K. D. Chabak, M. Trejo, A. Crespo, D. E. Walker, Y. Jinwei, R. Gaska, et al., "Strained AlInN/GaN HEMTs on SiC with 2.1-A/mm Output Current and 104-GHz Cutoff Frequency," IEEE Electron Device Letters, vol. 31, pp. 561-563, 2010.
[34] R. H. Wang, P. Saunier, X. Xing, C. X. Lian, X. A. Gao, S. P. Guo, et al., "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs with 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," Ieee Electron Device Letters, vol. 31, pp. 1383-1385, Dec 2010.
[35] F. Medjdoub, N. Herbecq, A. Linge, and M. Zegaoui, "High Frequency High Breakdown Voltage GaN Transistors," pp. 9.2.1-9.2.4, 2015.
[36] S. Y. Liao, C. C. Lu, T. Chang, C. F. Huang, C. H. Cheng, and L. B. Chang, "Gate Length Scaling Effect on High-Electron Mobility Transistors Devices Using AlGaN/GaN and AlInN/AlN/GaN Heterostructures," Journal of Nanoscience and Nanotechnology, vol. 14, pp. 6243-6246, 2014.
[37] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., "Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with FT= 143 GHz," Applied Physics Express, vol. 3, p. 094101, 2010.
[38] G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, "A New Method for Determining the FET Small-Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 1151-1159, 1988.
[39] P. M. White and R. M. Healy, "Improved Equivalent Circuit for Determination of MESFET and HEMT Parasitic Capacitances from "Coldfet" Measurements," IEEE Microwave and Guided Wave Letters, vol. 3, pp. 453-454, 1993.
[40] J. Lu, Y. Wang, L. Ma, and Z. Yu, "A New Small-Signal Modeling and Extraction Method in AlGaN/GaN HEMTs," Solid-State Electronics, vol. 52, pp. 115-120, 2008.
[41] M. Berroth and R. Bosch, "Broad-Band Determination of the FET Small-Signal Equivalent Circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 38, pp. 891-895, 1990.
[42] J. W. Chung, "Millimeter-wave GaN High Electron Mobility Transistors and Their Integration with Silicon Electronics," Massachusetts Institute of Technology, 2011.
[43] C.-W. Tsou, H.-C. Kang, Y.-W. Lian, and S. S. H. Hsu, "AlGaN/GaN HEMTs on Silicon with Hybrid Schottky–Ohmic Drain for RF Applications," IEEE Transactions on Electron Devices, vol. 63, pp. 4218-4225, 2016.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2017-10-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明