博碩士論文 104521069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:52.15.143.223
姓名 李彥漳(Yen-Chang Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以氮氣作為載氣改善有機金屬化學蒸氣沉積之氮化鋁銦/氮化鋁/氮化鎵異質結構傳輸特性
(Improving the Transport Properties of AlInN/AlN/GaN Heterostructures by Using Nitrogen Carrier Gas in Metal-Organic Chemical Vapor Deposition)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 相較於傳統的氮化鋁鎵/氮化鎵異質結構,氮化鋁銦/氮化鎵異質結構具有較高的二維電子氣濃度,使通道片電阻更進一步地降低,有助於降低場效電晶體之導通電阻。但是,過去之文獻顯示,氮化鋁銦異質結構受到較強烈的合金散射與界面粗糙散射的影響,其電子遷移率普遍低於氮化鋁鎵異質結構。在此異質結構中,即使使用氮化鋁間隔層減緩合金散射,其電子遷移率仍然偏低。因此,界面粗糙散射效應的改善應是提升氮化鋁銦異質結構之電子遷移率的首要課題。
本研究之主題為探討有機金屬化學蒸氣沉積法(MOCVD)磊晶條件對異質接面平整度之影響,並據以改善電子遷移率。一般而言,氮化鎵磊晶常用之載氣為氫氣,此研究顯示,在成長通道界面處改以氮氣作為載氣時,可抑制氫氣易引起之熱蝕刻缺陷的產生,有效地降低氮化鋁/氮化鎵通道界面之粗糙度,氮化鋁的表面平坦度可以從0.88 nm降低至0.65 nm。所製備的氮化鋁銦/氮化鋁/氮化鎵異質結構,在二維電子氣濃度高達2.1×1013 cm-2的情況下,電子遷移率仍可高達1360 cm2/V-s,達成通道片電阻低至215 ohm/sq的狀況。藉由磁阻量測之Shubnikov-de Haas oscillations與所萃取之量子散射時間可知,界面粗糙散射仍是此結構最主要之載子散射機制;而且二維電子氣濃度越高,此界面粗糙散射的影響就越大。
摘要(英) Compared to conventional AlGaN/GaN heterostructures, AlInN/GaN heterostructures have higher two-dimensional electron gas (2DEG) concentrations, which result in lower on-resistance of high electron mobility transistors (HEMTs). However, previous reports show that there exist stronger alloy scattering and interface roughness scattering in AlInN heterostructures. These make electron mobility lower than that in AlGaN heterostructures. The use of an AlN spacer to reduce alloy scattering cannot raise the electron mobility to a level comparable to that observed on AlGaN heterostructures. In order to improve the electron mobility of AlInN heterostructures, reducing interface roughness scattering should be of primary interest as well as importance.
This study aims to investigate the effects of growth conditions on the smoothness of the heterojunction during metal-organic chemical vapor deposition (MOCVD) so as to improve the electron mobility in AlInN/AlN/GaN heterostructures. H2 is a typical carrier gas used in the growth of GaN by MOCVD. In this study, N2 carrier gas is used during the growth of GaN/AlN heterojunction to suppress the thermal etching by H2, and effectively reduce the interface roughness. The surface roughness of AlN film desreases from 0.88 nm to 0.65 nm. An AlInN/AlN/GaN heterostrure with electron mobility of 1,360 cm2/V-s is achieved with a 2DEG concentration of 2.13×1013 cm-2, leading to a low sheet resistance of 215 ohm/sq. Quantum lifetimes extracted from Shubnikov-de Haas oscillations of the AlInN/AlN/GaN heterostrures growth with H2 and N2 carrier gas indicate that interface roughness scattering is still the dominant scattering mechanism and it is even more significant in the samples with higher 2DEG concentrations.
關鍵字(中) ★ 氮化鎵
★ 氮化鋁銦
★ 有機金屬化學蒸氣沉積
★ 舒勃尼科夫-德哈斯振盪
★ 電晶體
★ 電子遷移率
關鍵字(英) ★ GaN
★ AlInN
★ MOCVD
★ Shubnikov-de Haas oscillation
★ HEMT
★ mobility
論文目次 論文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 前言 1
1.2 氮化鎵功率元件發展現況 3
1.3 研究動機 4
1.3.1 氮化鋁銦/氮化鎵異質結構發展現況與面臨之瓶頸 4
1.4 論文架構 7
第二章 氮化鋁銦/氮化鎵磊晶結構設計與實驗原理介紹 8
2.1 氮化鋁銦/氮化鎵異質結構起源 8
2.1.1 三族氮化物異質結構極化效應 11
2.2 氮化鋁銦/氮化鎵磊晶結構設計與磊晶條件 13
2.3 成長氮化物於矽基板之關鍵技術 16
2.4 磁阻量測 23
2.4.1 舒勃尼科夫-德哈斯振盪(Shubnikov-de Haas Oscillations) 25
2.4.2 載子散射機制 31
2.5 本章總結 33
第三章 以氮氣載氣改善氮化鋁銦/氮化鋁/氮化鎵異質結構傳輸特性 34
3.1 前言 34
3.2 氮氣載氣對於通道界面粗糙度之影響 35
3.3 氮氣載氣對於氮化鋁銦/氮化鋁/氮化鎵異質結構之影響 43
3.4 氮化鋁銦/氮化鋁/氮化鎵異質結構之SdH振盪分析 48
3.4.1 量子散射時間 50
3.4.2 以散射時間比值分析該結構之散射機制 54
3.5 本章總結 59
第四章 結論 61
參考文獻 64
參考文獻
[1] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, M. Park, et al., ”High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, vol. 50, pp. 1744-1747, 2006.
[2] M. Gonschorek, J. F. Carlin, E. Feltin, M. A. Py, and N. Grandjean, ”High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied Physics Letters, vol. 89, p. 062106, 2006.
[3] A. Teke, S. Gökden, R. Tülek, J. H. Leach, Q. Fan, J. Xie, et al., ”The effect of AlN interlayer thicknesses on scattering processes in lattice-matched AlInN/GaN two-dimensional electron gas heterostructures,” New Journal of Physics, vol. 11, p. 063031, 2009.
[4] S. Zhang, M. C. Li, Z. H. Feng, B. Liu, J. Y. Yin, and L. C. Zhao, ”High electron mobility and low sheet resistance in lattice-matched AlInN/AlN/GaN/AlN/GaN double-channel heterostructure,” Applied Physics Letters, vol. 95, p. 212101, 2009.
[5] D. S. Lee, X. Gao, S. Guo, and T. Palacios, ”InAlN/GaN HEMTs With AlGaN Back Barriers,” IEEE Electron Device Letters, vol. 32, pp. 617-619, 2011.
[6] S. W. Kaun, E. Ahmadi, B. Mazumder, F. Wu, E. C. H. Kyle, P. G. Burke, et al., ”GaN-based high-electron-mobility transistor structures with homogeneous lattice-matched InAlN barriers grown by plasma-assisted molecular beam epitaxy,” Semiconductor Science and Technology, vol. 29, p. 045011, 2014.
[7] Y. L. Fang, Z. H. Feng, J. Y. Yin, Z. R. Zhang, Y. J. Lv, S. B. Dun, et al., ”Ultrathin InAlN/GaN heterostructures with high electron mobility,” physica status solidi (b), vol. 252, pp. 1006-1010, 2015.
[8] J. Cheng, X. Yang, L. Sang, L. Guo, A. Hu, F. Xu, et al., ”High mobility AlGaN/GaN heterostructures grown on Si substrates using a large lattice-mismatch induced stress control technology,” Applied Physics Letters, vol. 106, p. 142106, 2015.
[9] P. Altuntas, F. Lecourt, A. Cutivet, N. Defrance, E. Okada, M. Lesecq, et al., ”Power Performance at 40 GHz of AlGaN/GaN High-Electron Mobility Transistors Grown by Molecular Beam Epitaxy on Si(111) Substrate,” IEEE Electron Device Letters, vol. 36, pp. 303-305, 2015.
[10] S. Bouzid-Driad, H. Maher, M. Renvoise, P. Frijlink, M. Rocchi, N. Defrance, et al., ”Optimization of AlGaN/GaN HEMT Schottky contact for microwave applications,” in 2012 7th European Microwave Integrated Circuit Conference, 2012, pp. 119-122.
[11] J.-T. Chen, I. Persson, D. Nilsson, C.-W. Hsu, J. Palisaitis, U. Forsberg, et al., ”Room-temperature mobility above 2200 cm2/V·s of two-dimensional electron gas in a sharp-interface AlGaN/GaN heterostructure,” Applied Physics Letters, vol. 106, p. 251601, 2015.
[12] J.-T. Chen, C.-W. Hsu, U. Forsberg, and E. Janzén, ”Metalorganic chemical vapor deposition growth of high-mobility AlGaN/AlN/GaN heterostructures on GaN templates and native GaN substrates,” Journal of Applied Physics, vol. 117, p. 085301, 2015.
[13] J.-T. Chen, U. Forsberg, and E. Janzén, ”Impact of residual carbon on two-dimensional electron gas properties in AlxGa1−xN/GaN heterostructure,” Applied Physics Letters, vol. 102, p. 193506, 2013.
[14] J. W. Chung, W. E. Hoke, E. M. Chumbes, and T. Palacios, ”AlGaN/GaN HEMT With 300-GHz fmax,” IEEE Electron Device Letters, vol. 31, pp. 195-197, 2010.
[15] B. Mazumder, S. W. Kaun, J. Lu, S. Keller, U. K. Mishra, and J. S. Speck, ”Atom probe analysis of AlN interlayers in AlGaN/AlN/GaN heterostructures,” Applied Physics Letters, vol. 102, p. 111603, 2013.
[16] A. Fontsere, A. Perez-Tomas, M. Placidi, N. Baron, S. Chenot, J. C. Moreno, et al., ”Bulk Temperature Impact on the AlGaN/GaN HEMT Forward Current on Si, Sapphire and Free-Standing GaN,” ECS Solid State Letters, vol. 2, pp. P4-P7, 2012.
[17] S. Tirelli, D. Marti, H. Sun, A. R. Alt, J.-F. Carlin, N. Grandjean, et al., ”Fully Passivated AlInN/GaN HEMTs With fT/fMAX of 205/220 GHz,” IEEE Electron Device Letters, vol. 32, pp. 1364-1366, 2011.
[18] H. W. Then, L. A. Chow, S. Dasgupta, S. Gardner, M. Radosavljevic, V. R. Rao, et al., ”High-performance low-leakage enhancement-mode high-K dielectric GaN MOSHEMTs for energy-efficient, compact voltage regulators and RF power amplifiers for low-power mobile SoCs,” pp. T202-T203, 2015.
[19] A. Malmros, P. Gamarra, M.-A. Di Forte-Poisson, H. Hjelmgren, C. Lacam, M. Thorsell, et al., ”Evaluation of Thermal Versus Plasma-Assisted ALD Al2O3 as Passivation for InAlN/AlN/GaN HEMTs,” IEEE Electron Device Letters, vol. 36, pp. 235-237, 2015.
[20] Y. Yue, Z. Hu, J. Guo, B. Sensale-Rodriguez, G. Li, R. Wang, et al., ”InAlN/AlN/GaN HEMTs With Regrown Ohmic Contacts and fT of 370 GHz,” IEEE Electron Device Letters, vol. 33, pp. 988-990, 2012.
[21] P. Kordos, M. Mikulics, A. Fox, D. Gregusova, K. Cico, J. F. Carlin, et al., ”RF Performance of InAlN/GaN HFETs and MOSHFETs With FT x LG up to 21 GHz-um,” IEEE Electron Device Letters, vol. 31, pp. 180-182, 2010.
[22] C. Ostermaier, G. Pozzovivo, J. F. Carlin, B. Basnar, W. Schrenk, Y. Douvry, et al., ”Ultrathin InAlN/AlN Barrier HEMT With High Performance in Normally Off Operation,” IEEE Electron Device Letters, vol. 30, pp. 1030-1032, 2009.
[23] H. Sun, A. R. Alt, H. Benedickter, C. R. Bolognesi, E. Feltin, J.-F. Carlin, et al., ”Ultrahigh-Speed AlInN/GaN High Electron Mobility Transistors Grown on (111) High-Resistivity Silicon with fT= 143 GHz,” Applied Physics Express, vol. 3, p. 094101, 2010.
[24] K. Cheng, S. Degroote, M. Leys, F. Medjdoub, J. Derluyn, B. Sijmus, et al., ”Very low sheet resistance AlInN/GaN HEMT grown on 100 mm Si(111) by MOVPE,” physica status solidi (c), vol. 7, pp. 1967-1969, 2010.
[25] A. Watanabe, J. J. Freedsman, R. Oda, T. Ito, and T. Egawa, ”Characterization of InAlN/GaN high-electron-mobility transistors grown on Si substrate using graded layer and strain-layer superlattice,” Applied Physics Express, vol. 7, p. 041002, 2014.
[26] A. Watanabe, J. J. Freedsman, Y. Urayama, D. Christy, and T. Egawa, ”Thermal stability of an InAlN/GaN heterostructure grown on silicon by metal-organic chemical vapor deposition,” Journal of Applied Physics, vol. 118, p. 235705, 2015.
[27] Y. Liu, S. P. Singh, Y. J. Ngoo, L. M. Kyaw, M. K. Bera, Q. Q. Lo, et al., ”Low thermal budget Hf/Al/Ta ohmic contacts for InAlN/GaN-on-Si HEMTs with enhanced breakdown voltage,” Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol. 32, p. 032201, 2014.
[28] S. Arulkumaran, K. Ranjan, G. I. Ng, C. M. Manoj Kumar, S. Vicknesh, S. B. Dolmanan, et al., ”High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate,” IEEE Electron Device Letters, vol. 35, pp. 992-994, 2014.
[29] D. Marti, L. Lugani, J.-F. Carlin, M. Malinverni, N. Grandjean, and C. R. Bolognesi, ”W-Band MMIC Amplifiers Based on AlInN/GaN HEMTs Grown on Silicon,” IEEE Electron Device Letters, vol. 37, pp. 1025-1028, 2016.
[30] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, et al., ”Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87, pp. 334-344, 2000.
[31] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, et al., ”Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
[32] H. Morkoç, R. Cingolani, and B. Gil, ”Polarization effects in nitride semiconductor device structures and performance of modulation doped field effect transistors,” Solid-State Electronics, vol. 43, pp. 1909-1927, 1999.
[33] A. Krost, A. Dadgar, J. Bläsing, A. Diez, T. Hempel, S. Petzold, et al., ”Evolution of stress in GaN heteroepitaxy on AlN/Si(111): From hydrostatic compressive to biaxial tensile,” Applied Physics Letters, vol. 85, pp. 3441-3443, 2004.
[34] A. Dadgar, A. Strittmatter, J. Bläsing, M. Poschenrieder, O. Contreras, P. Veit, et al., ”Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon,” physica status solidi (c), vol. 0, pp. 1583-1606, 2003.
[35] M. Azize and T. Palacios, ”Effect of substrate-induced strain in the transport properties of AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 108, p. 023707, 2010.
[36] E. Feltin, B. Beaumont, M. Laügt, P. de Mierry, P. Vennéguès, H. Lahrèche, et al., ”Stress control in GaN grown on silicon (111) by metalorganic vapor phase epitaxy,” Applied Physics Letters, vol. 79, pp. 3230-3232, 2001.
[37] A. Ubukata, K. Ikenaga, N. Akutsu, A. Yamaguchi, K. Matsumoto, T. Yamazaki, et al., ”GaN growth on 150-mm-diameter (111) Si substrates,” Journal of Crystal Growth, vol. 298, pp. 198-201, 2007.
[38] K. Hiramatsu, K. Nishiyama, M. Onishi, H. Mizutani, M. Narukawa, A. Motogaito, et al., ”Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO),” Journal of Crystal Growth, vol. 221, pp. 316-326, 2000.
[39] Z. Liliental-Weber and D. Cherns, ”Microstructure of laterally overgrown GaN layers,” Journal of Applied Physics, vol. 89, pp. 7833-7840, 2001.
[40] K. Cheng, M. Leys, S. Degroote, B. Van Daele, S. Boeykens, J. Derluyn, et al., ”Flat GaN epitaxial layers grown on Si(111) by metalorganic vapor phase epitaxy using step-graded AlGaN intermediate layers,” Journal of Electronic Materials, vol. 35, pp. 592-598, 2006.
[41] L. W. Wong, S. J. Cai, R. Li, K. Wang, H. W. Jiang, and M. Chen, ”Magnetotransport study on the two-dimensional electron gas in AlGaN/GaN heterostructures,” Applied Physics Letters, vol. 73, pp. 1391-1393, 1998.
[42] S. V. Danylyuk, S. A. Vitusevich, B. Podor, A. E. Belyaev, A. Y. Avksentyev, V. Tilak, et al., ”The investigation of properties of electron transport in AlGaN/GaN heterostructures,” Microelectronics Journal, vol. 34, pp. 575-577, 2003.
[43] T.-M. Chen, C. T. Liang, M. Y. Simmons, G.-H. Kim, and D. A. Ritchie, ”Transport and quantum lifetime dependence on electron density in gated GaAs/AlGaAs heterostructures,” Physica E: Low-dimensional Systems and Nanostructures, vol. 22, pp. 312-315, 2004.
[44] P. Ruterana, Albrecht, M., Neugebauer, J., Nitride semiconductors: Hand Book on Materials and Devices vol. 6. betz-druck gmbh Press, 2003.
[45] D. D. Koleske, A. E. Wickenden, R. L. Henry, J. C. Culbertson, and M. E. Twigg, ”GaN decomposition in H2 and N2 at MOVPE temperatures and pressures,” Journal of Crystal Growth, vol. 223, pp. 466-483, 2001.
[46] Y.-H. Yeh, K.-M. Chen, Y.-H. Wu, Y.-C. Hsu, T.-Y. Yu, and W.-I. Lee, ”Hydrogen etching of GaN and its application to produce free-standing GaN thick films,” Journal of Crystal Growth, vol. 333, pp. 16-19, 2011.
[47] T. Nanjo, M. Suita, T. Oishi, Y. Abe, E. Yagyu, K. Yoshiara, et al., ”Comparison of characteristics of AlGaN channel HEMTs formed on SiC and sapphire substrates,” Electronics Letters, vol. 45, p. 424, 2009.
[48] H. Predel, H. Buhmann, L. W. Molenkamp, R. N. Gurzhi, A. N. Kalinenko, A. I. Kopeliovich, et al., ”Effects of electron-electron scattering on electron-beam propagation in a two-dimensional electron gas,” Physical Review B, vol. 62, pp. 2057-2064, 2000.
[49] M. J. Manfra, S. H. Simon, K. W. Baldwin, A. M. Sergent, K. W. West, R. J. Molnar, et al., ”Quantum and transport lifetimes in a tunable low-density AlGaN/GaN two-dimensional electron gas,” Applied Physics Letters, vol. 85, pp. 5278-5280, 2004.
[50] L. Hsu and W. Walukiewicz, ”Transport-to-quantum lifetime ratios in AlGaN/GaN heterostructures,” Applied Physics Letters, vol. 80, pp. 2508-2510, 2002.
[51] A. Saxler, P. Debray, R. Perrin, S. Elhamri, W. C. Mitchel, C. R. Elsass, et al., ”Characterization of an AlGaN/GaN two-dimensional electron gas structure,” Journal of Applied Physics, vol. 87, pp. 369-374, 2000.
[52] A. F. Braña, C. Diaz-Paniagua, F. Batallan, J. A. Garrido, E. Muñoz, and F. Omnes, ”Scattering times in AlGaN/GaN two-dimensional electron gas from magnetoresistance measurements,” Journal of Applied Physics, vol. 88, pp. 932-937, 2000.
[53] S. Elhamri, R. S. Newrock, D. B. Mast, M. Ahoujja, W. C. Mitchel, J. M. Redwing, et al., ”Al0.15Ga0.85N/GaN heterostructures:Effective mass and scattering times,” Physical Review B, vol. 57, pp. 1374-1377, 1998.
[54] E. Tiras, S. Ardali, E. Arslan, and E. Ozbay, ”Energy Relaxation Rates in AlInN/AlN/GaN Heterostructures,” Journal of Electronic Materials, vol. 41, pp. 2350-2361, 2012.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2017-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明