博碩士論文 104521070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.144.172.101
姓名 林瑋哲(Wei-Tse Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具背閘極之氮化鋁鎵/氮化鎵高電子遷移率電晶體
(AlGaN/GaN HEMTs with Backgate Structure)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文探討背閘極結構對氮化鋁鎵/氮化鎵高電子遷移率電晶體電性的影響,內容分為兩個主題, (1) 使用氮化鋁鎵/氮化鎵/氮化鋁鎵雙異質結構磊晶層製作的二維電洞氣背閘極電晶體,透過偏壓二維電洞氣背閘極研究元件漏電流與臨界電壓的改變。(2) 使用p-型氮化鎵背閘極之氮化鋁鎵/氮化鎵電晶體,元件製作前先經過700度15分鐘氮氣環境中進行熱退火,利用p-型氮化鎵磊晶的活化與否,研究不同背閘極偏壓對元件的臨界電壓、漏電流和崩潰電壓影響。
從元件模擬結果可觀察出以二維電洞氣為背閘極並透過偏壓控制使元件由空乏型(depletion-mode operation)變成加強型工作模式(enhancement-mode operation)並改善元件漏電流是可行的。但元件因為背閘極蝕刻深度和背閘極電極製作,無法得到背閘極和準確控制和二維電洞氣間的有效連接,使元件在臨界電壓的控制上無法如模擬的結果。但背閘極金屬施加的負偏壓依然可藉由較大的電場抑制元件的漏電流,元件在不同背閘極偏壓下開關電流比值皆可達到107等級,元件崩潰電壓也可以達到691 V。
具p-型氮化鎵背閘極之氮化鋁鎵/氮化鎵高電子遷移率電晶體在元件直流特性的量測上,未經退火製程元件有較低的漏電流與導通電阻,經過退火製程元件在背閘極偏壓控制上有更明顯的抑制漏電流和臨界電壓的正向偏移。在背閘極偏壓從0 V增加到-14 V時,未經退火製程的元件之臨界電壓向正偏移0.46 V,關閉時漏電流降低了42.6% ;經過退火製程的元件之臨界電壓向正偏移0.55 V,關閉時漏電流降低了73.1% 。兩種元件在背閘極偏壓為0 V的開關電流比值分別為 (〖I_on/I_off )〗_(with activation )= 8.86×105、(〖I_on/I_off )〗_(without activation )= 5.47×107 。經過退火的元件在背閘極偏壓為-14 V時開關電流比可提升至1.12×107。在崩潰電壓上,經過退火製程的元件有較強的耐壓,未經退火製程的元件在元件達到崩潰電壓前有較低的漏電流。經過退火製程的元件且背閘極偏壓為-14 V時,呈現最好的崩潰電壓762 V。
摘要(英)
This study discusses the impact of back-gate structure on the DC characteristics of an AlGaN/GaN high-electron mobility transistor (HEMT). There are two parts in this study: (1) An AlGaN/GaN/AlGaN double heterostructure is designed to form two dimensional electron gas (2DEG) channel and two dimentional hole gas (2DHG) backgate and investigate the reduction of leakage current with shift of threshold voltage when backgate bias is applied. (2) AlGaN/GaN HEMTs with p-GaN backgate were annealed for 15 minutes in N2 ambient at 700℃. After annealing, we investigate the ability of activated p-GaN backgate layer for controling threshold voltage, reducing leakage current, and enhancing breakdown voltage.
The results of simulation reveal that 2DHG backgate can decrease leakage current and turn device from depletion-mode operation to enhancement-mode operation by applying backgate bias. However, the fabricated devices do not demonstrate the same control capibility of threshold voltage as simulation due to the bad connection between backgate metal and 2DHG. The large electric field induced by backgate still can suppress device leakage current when a negative bias is applied. The on/off current ratio in different backgate bias can achieve 107. In addition, device breakdown voltage of 691 V is observed.
For the DC characteristic of AlGaN/GaN HEMTs with p-GaN backgate, devices without annealing have lower leakage current and on-state resistance. Devices with annealing show higher leakage current and more obvious positive shift of threshold voltage. The shift of threshold voltage for device without annealing is 0.46 V between backgate bias 0 V and -14 V, and off-state leakage current reduction is 42.6%. The shift of threshold voltage for device with annealing is 0.55 V between backgate bias 0 V and -14 V, and off state leakage current reduction is 73.1%. The on/off current ratio for device without annealing is 5.47×107, and 8.86×105 for device with annealing when backgate bias apply 0 V. Current ratio for device with annealing can increase to 1.12×107 when backgate bias at -14 V. Devices without annealing show lower leakage current before devices breakdown. However, devices with annealing show higher breakdown voltage. The highest breakdown voltage is 762 V for device with annealing when applying backgate bias of -14 V.
關鍵字(中) ★ 氮化鋁鎵/氮化鎵
★ 背閘極
★ 臨界電壓
★ 漏電流
關鍵字(英) ★ AlGaN/GaN
★ backgate
★ threshold voltage
★ leakage current
論文目次
摘要 I
Abstract III
致謝 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1前言 1
1.2氮化鋁鎵/氮化鎵場效電晶體發展與背閘極電晶體相關研究 4
1.3本論文研究動機與目的 11
1.4論文架構 11
第二章 具2DHG背閘極之氮化鋁鎵/氮化鎵高電子遷移率電晶體 12
2.1前言 12
2.2磊晶設計和元件特性模擬 12
2.2.1磊晶設計 12
2.2.2元件特性模擬 15
2.3磊晶特性與元件製作流程 20
2.3.1 磊晶特性分析 20
2.3.2 元件製作流程 21
2.4元件直流特性分析 24
2.5結論 35
第三章 具p-型氮化鎵背閘極氮化鋁鎵/氮化鎵高電子遷移率電晶體 36
3.1前言 36
3.2元件特性模擬和磊晶結構 36
3.2.1 元件特性模擬 36
3.3磊晶特性和元件製作流程 41
3.3.1 磊晶特性 41
3.3.2 元件製作流程 46
3.4氮化鋁鎵/氮化鎵背閘極場效電晶體直流電性分析 49
3.5結論 64
第四章 結論與未來展望 66
參考文獻 68
參考文獻

[1] U. K. Mishra, L. Shen, and T. E. Kazior, “GaN Power Devices for Power Devices and Amplifiers,”Proceedings of the IEEE, no. 2, pp.287-305, February 2008.
[2] N. Kaminski, and O. Hilt, “SiC and GaN devices – wide bandgap is not all the same,” IET Circuits Devices Syst, vol. 8, iss. 3, pp. 227–236, May 2014.
[3] K. Madjour and H. Lin, “RF GaN Technology & Market Analysis: Applications, Players, Devices & Substrates2010-2020,” Market & technology Report, 2014
[4] H. Huang, Y. C. Liang, G. S. Samudra, T. Chang, and C. Huang, “High electron mobility transistor based on a GaN-AlxGa1-xN heterojunction,” Applied Physics Letters, vol. 63, no. 9, pp.1214-1215, August 1993.
[5] P. Kordos, J. Bernat, and M. Marso, “Impact of layer structure on performance of unpassivated AlGaN/GaN HEMT,”Electronics Letters, vol. 40, iss. 1, pp. 438–441, March 2005.
[6] T. Zine-eddine, H. Zahra, and M. Zitouni, “DC and RF characteristics of AlGaN/GaN HEMT and MOS-HEMT,” International Conference on Electrical Engineering, December 2015.
[7] C. Liu, E. F. Chor, and L.S. Tan, “Enhanced device performance of AlGaN/GaN HEMTs using HfO2 high-kdielectric for surface passivation and gate oxide,” Semiconductor Science and Technology, vol. 22, no. 5, pp.522-527, March 2007.
[8] T. Hashizume, S. Ootomo, and H. Hasegawa, “Suppression of current collapse in insulated gate AlGaN/GaN heterostructure field-effect transistors using ultrathin Al2O3 dielectric,” Applied Physics Letters, vol. 83, no. 14, pp. 2952-2954, October 2003.
[9] D. Deen, D. Storm, D. Meyer, and T Gougousi, “AlN/GaN HEMTs with high-κ ALD HfO2 or Ta2O5 gate insulation,” Physica. Status Solidi C, no. 7–8, pp. 2420–2423, May 2011.
[10] A. Fontser, A. Perez-Tomas, and J. Millan, “High Voltage Low Ron In-situ SiN/Al0.35GaN0.65/GaN-on-Si Power HEMTs Operation up to 300 oC,” Proceedings of the European Solid-State Device Research Conference, pp.306-309, September 2012.
[11] S. Yoshida, Y. Sakaida, and M. Kuzuhara, “Current Collapse in AlGaN/GaN HEMTs with a GaN Cap Layer,” Future of Electron Devices, Kansai (IMFEDK), 2015 IEEE International Meeting for, June 2015.
[12] T. Chang, T. Hsiao, and Y. C. Liang, “Phenomenon of Drain Current Instability on p-GaN Gate AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices, vol 62, iss 2, pp.339-345, September 2014.
[13] F. Brunner, M. Cho, and M. Weyers, “Comparative study of buffer designs for high breakdown voltage AlGaNGaN HFETs,” Phisica. Status Solidi C, vol. 8, no. 7-8, pp.2427-2429, June 2011.
[14] S. Kato, Y. Satoh, and S. Yoshida, “C-doped GaN buffer layers with high breakdown voltages for highpower operation AlGaN/GaN HFETs on 4-in Si substrates by MOVPE,” Journal of Crystal Growth, vol. 298, pp.831-834, 2007.
[15] Y. C. Choi, M. Pophristic, and L. F. Eastman, “High Breakdown Voltage and Low Specific Onresistance C-doped GaN-on-sapphire HFETs for Low-loss and High-power Switching Applications,” Applied Power Electronics Conference, pp.1264-1267, March 2007.
[16] E. Bahat-Treidel, O. Hilt, and G. Tränkle, “Punch-through voltage enhancement scaling of AlGaN/GaN HEMTs using AlGaN double heterojunction confinement,” Physica Status Solidi C, vol. 6, no. 6, pp.1373-1377, March 2009.
[17] P. Xu, Y. Jiang, and H. Chen, “Analyses of 2-DEG characteristics in GaN HEMT with AlN/GaN super-lattice as barrier layer grown by MOCVD,” Nanoscale Research Letters, vol. 7, no. 141, pp.1-6, 2012.
[18] E. Bahat-Treidel, O. Hilt, and G. Tränkle, “AlGaN/GaN/AlGaN DH-HEMTs Breakdown Voltage Enhancement Using Multiple Grating Field Plates (MGFPs),” IEEE Transations on Eletron Device, vol. 57, no. 6, pp.1208-1216, June 2010.
[19] Y. L. Lee, Y. C. Yao, and J. M. Hwang, “High breakdown voltage in AlGaN/GaN HEMTs using AlGaN/GaN/AlGaN quantum-well electron-blocking layers,” Nanoscale Research Letters, vol. 9, pp. 1-9, 2014.
[20] M. Shatalov, G. Simin, and M. Asif Khan,” GaN/AlGaN p-Channel Inverted Heterostructure JFET,” IEEE Eletron Device Letters, vol.23, no.8, pp.452-454, August 2002
[21] A. Nakajima, Y. Sumida, and E. M. Sankara Narayanan, “GaN-Based Super Heterojunction Field Effect Transistors Using the Polarization Junction Concept,” IEEE Eletron Device Letters, vol. 32, no. 4, pp.542-544, April 2011.
[22] Y. H. Lo, M. Werner, and S. Wang, “The Electrical and Optical Properties of a Four-Terminal Top Back Gate FET,” IEEE Transactions on Electron Devvice, vol. ED-33, no. 5, pp.717-722, May 1986.
[23] M. B. Patil, S. Agarwala, and H. Morkoc, “Back-Gated FIield Effect In A Double Heterostructure Modulation-Doped Field-Effect Transistor,” Electronic Letters, vol. 24, no. 15, pp.925-926, June 1988.
[24] C. Sampedro, F. Ga´miz, and J. Ahopelto, “A comprehensive study of carrier velocity modulation in DGSOI transistors,” Solid-State Electronics, vol. 49, pp.1504-1509, September 2005.
[25] A. Aminbeidokhti, A. A. Orouji, and M. Ghasemian, “A Novel High-Breakdown-Voltage SOI MESFET by Modified Charge Distribution,” IEEE Transactions on Electron Devices, vol. 59, no. 5, pp.1255-1262, May 2012.
[26] L. Wang, X. Zhong, and J. Xu, “Modeling the back gate effects of AlGaN/GaN HEMTs,” J Comput Electron, vol.13, pp.872-876, August 2014.
[27] H. C. Chiu, Y. M. Hsin, and J. I. Chyi, “Analysis of the Back-Gate Effect in Normally OFF p-GaN Gate High-Electron Mobility Transistor,” IEEE Transactions on Electron Devices, vol. 62, no. 2, pp.507-511, February 2015.
[28] H.-C. Lee, S.-Y. Hyun, H.-I.Cho K.-W. Kim, A.Ahn, J.-B. Ha and J.-H. Lee, “Enhanced-Electrical-Characteristics-of-AlGaN-GaN-Heterostructure-Field-Effect-Transistor,” Journal of Applied Physics, vol. 85, no. 6, pp.2484-2487, March 1999.
[29] O. Ambacher, J. Smart, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp.2484-2487, March 1999.
[30] C. Y. Hu, D. Kikuta, and M. Sugimoto, “VT − VSUB Characterization of AlGaN/GaN HFET With p-Type Body Layer,” IEEE Transactions on Electron Devices, vol. 58, no. 12, pp.4265-4271, December 2011.
[31] H. C. Lee, S. Y. Hyun, and J. H. Lee, “Enhanced Electrical Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistor with p-GaN Back Barriers and Si Delta-Doped Layer,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 2824-2827, April 2008.
[32] J. W. P. Hsu, M. J. Manfra, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Applied Physics Letters, vol. 81, no.1, pp.79-81, July 2002.
[33] B. Heying, X. H. Wu, and J. S. Speck, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films,” Applied Physics Letters, vol.68, no.5, pp.644-646, January 1996.
[34] S. J. Pearton, J. C. Zolper, and R. J. ShulF. Ren, “GaN: Processing, defects, and devices,” Journal of Applied Physics, vol.86, no.1, pp.42, July 1999.
[35] S. J. Chang, S. C. Wei, and T. S. Hsu, “AlGaN/GaN Modulation-Doped Field-Effect Transistors with An Mg-doped Carrier Confinement Layer,” Japanese Journal of Applied Physics, vol.42, no. 6A, pp. 3316-3319, June 2003.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明