博碩士論文 104521084 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.98.49
姓名 葉瀚濃(Han-Nung,Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用注入鎖定技術之W頻段除三除頻器與V頻段除六除頻器及Q頻段鎖頻迴路
(W-band Divide-by-3 Frequency Divider and V-band Divide-by-6 Frequency Divider and Q-band Frequency-Locked Loop Using Injection-Locked Technique)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 主被動毫米波收發機應用於目標偵測是未來發展的趨勢,近年來半導體製程技術發展成熟,使用矽基製程來開發毫米波上的應用也得到新的進展。本論文主要針對毫米波注入鎖定技術應用於除頻器及鎖頻迴路,以達到低功耗、低相位雜訊之研究。第二章闡述一個W頻段高除數、高鎖定範圍使用電感匹配注入鎖定除頻器之分析、設計以及量測結果。第三章為V頻段注入鎖定除六頻器。最後,第四章為具鎖頻迴路自對準之次諧波注入鎖定振盪器之電路設計與量測結果。V頻段注入鎖定除六頻器及具鎖頻迴路自對準之次諧波注入鎖定振盪器採用台積電提供的90 nm互補式金氧半場效電晶體製程(TSMC 90 nm GUTM CMOS)。W頻段注入鎖定除三頻器則是採用台積電提供的40 nm互補式金氧半場效電晶體製程(TSMC 40 nm CMOS)。
第二章將介紹除頻器架構與注入鎖定原理,並提出電感匹配注入鎖定三除頻器電路分析模型,理論結果與實驗結果相互驗證,並且使用台積電40 nm CMOS製程設計實現W頻段使用電感匹配注入鎖定除三除頻器,量測鎖定頻寬為10.1 GHz相當於10.2 %比例頻寬,電路直流總功耗為7.2 mW。
第三章為V頻段注入鎖定除六除頻器的設計及分析,分析步驟大致與第二章分析除三除頻器相同,推導出鎖定頻寬公式,並且使用台積電90 nm GUTM CMOS製程設計實現一個V頻段注入鎖定除六除頻器,量測鎖定頻寬為5.6 GHz相當於9.8 %比例頻寬,電路直流總功耗為5.6 mW。
第四章為具鎖頻迴路自對準之次諧波注入鎖定振盪器。首先介紹理論模型及轉移函數,接著利用ADS(advance design system)軟體進行模擬分析鎖頻迴路,
能夠有效率的分析鎖頻迴路系統的開迴路及閉迴路響應。此外,利用提出的理論模型分析比較各種結構頻率合成器之相位雜訊及抖動量。量測的鎖頻範圍為33.4 到35.2 GHz,各個控制電壓的鎖定範圍約為50 MHz,輸出功率大於-7 dBm。當輸出鎖定頻率為33.9 GHz時,距載波偏移1 MHz的相位雜訊為-108.9 dBc/Hz,抖動量積分範圍由1 kHz到40 MHz為144 fs。電路直流總功耗為70.6 mW。
摘要(英) The use of active and passive millimeter-wave transceivers for detection is a trend. In recent years, semiconductor process technology has matured, and the development of millimeter-wave applications using Silicon processes has also seen new advances. This thesis focuses on the application of millimeter wave injection locking technology in frequency divider and frequency locked loop to achieve low power consumption and low phase noise.Analysis, design and measured results for W-band high-division-ratio divide-by-3 injection-locked frequency divider (ILFD) in Chapter 2. Analysis, design and measured results of a V-band divide-by-6 ILFD are proposed in Chapter 3. Finally, the sub-harmonic injection-locked VCO with FLL self-alignment (SILFLL) are presented in Chapter 4. The V-band divide-by-6 ILFD and SILFLL in this thesis are fabricated using TSMC 90 nm GUTM CMOS process. The W-band ILFD is fabricated using TSMC 40 nm CMOS process.
First, frequency dividers and the injection-locked theory are introduced in Chapter 2. Then, the locking range of divide-by-3 is investigated to obtain the design methodology. From the analysis, the locking range of ILFDs is proportional to the device size of the injectors and the amplitude of the injection signal. Using inductor matching improves the locking range of divide-by-3. The proposed W-band divide-by-3 ILFD features a locking range of 10.1 GHz and a 10.2% fractional bandwidth. The power consumption is about 7.2 mW.
In Chapter 3, we proposed a V-band divide-by-6 ILFD with low power consumption. The locking range is proportional to the device size of the injectors and the amplitude of the injection signal like in Chapter 2. The free-running oscillation frequency of the proposed ILFD is about 9.5 GHz and phase noise is -67.3 dBc/Hz. The measured locking range is about 5.6 GHz from 54.5 to 60.1 GHz with an input power -5 dBm. When the input signal is 144 GHz, the measured input and output phase noises at 100 kHz offset are respectively -125 and -140 dBc/Hz. The phase noise difference between input and output is about 15 dB, and it agrees with the theoretical calculation (20log6). The core power consumption is about 5.6 mW.
A sub-harmonic injection-locked oscillator with frequency-locked loop self-alignment (SILFLL) are presented in Chapter 4. First, the theoretical models and transfer functions of FLL are introduced, then using ADS (advance design system) software with system setup analyses FLL. We can efficiently analyze the opened-loop and closed-loop responses of the FLL system. Furthermore, a theoretical model of the SILFLL is proposed, and used to calculate phase noise and jitter for the comparison of various topologies frequency synthesizer. The measured locked range of the SILFLL is from 33.4 to 35.2 GHz and locking range for each control voltage is about 50 MHz. The measured output power is higher than -7 dBm over the range. When the injection-locked output frequency is 33.9 GHz, the measured phase noise (1 MHz offset) and RMS jitter (integrated from 1 kHz to 40 MHz) are -108.9 dBc/Hz and 144 fs, respectively. The total power consumption is about 70.6 mW.
關鍵字(中) ★ 鎖頻迴路
★ 注入鎖定
★ 毫米波電路
關鍵字(英)
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XV
第1章 緒論 1
1.1 研究動機及背景 1
1.2 現況研究及發展 2
1.3 貢獻 2
1.4 論文架構 3
第2章 應用於W頻段使用電感匹配之除三注入鎖定除頻器 5
2.1 簡介 5
2.2 除頻器架構概述 6
2.2.1 注入鎖定原理概述[84] 6
2.2.2 注入鎖定(ILFD)除頻器 9
2.3 鎖定頻寬 10
2.3.1 分析電路模型簡介[22] 10
2.3.2 注入鎖定除三除頻器鎖定頻寬分析 11
2.3.2.1 鎖定頻寬分析 11
2.3.2.2 Q值分析 12
2.3.2.3 注入電流與振盪電流 13
2.3.2.4 鎖定頻寬 16
2.4 W頻段注入鎖定除三除頻器 17
2.4.1 電路設計 17
2.4.2 實驗結果與討論 20
2.5 總結 28
第3章 應用於V頻段除六注入鎖定除頻器 30
3.1 簡介 30
3.2 鎖定頻寬分析 30
3.2.1 注入鎖定除六除頻器鎖定頻寬分析 30
3.2.1.1 電路架構與模型 30
3.2.1.2 Q值分析 32
3.2.1.3 注入電流與振盪電流 34
3.2.1.4 輸入阻抗討論 37
3.2.1.5 鎖定頻寬 39
3.2.2 分析結果與討論 39
3.3 V頻段注入鎖定除六除頻器 40
3.3.1 高除數預除器架構簡介[92] 40
3.3.2 電路設計 41
3.3.3 實驗結果與討論 47
3.4 總結 56
第4章 具鎖頻迴路自對準之Q頻段次諧波注入鎖定壓控振盪器 58
4.1 簡介 58
4.2 系統模擬與相位雜訊分析 61
4.2.1 鎖頻迴路系統模擬[118] 61
4.2.2 鎖頻迴路暫態響應 76
4.2.3 鎖頻迴路相位雜訊分析 77
4.3 電路設計 83
4.3.1 脈衝產生器 83
4.3.2 次諧波注入鎖定四相位壓控振盪器 87
4.3.3 除二注入鎖定除頻器 94
4.3.4 電流模式邏輯除頻器 95
4.3.5 相位偵測器及頻率偵測器 98
4.4 電路實現及實驗結果與討論 103
4.4.1 次諧波注入鎖定四相位壓空振盪器量測 105
4.4.2 鎖相迴路量測 111
4.4.3 次諧波注入鎖定鎖相迴路量測 119
4.4.4 具鎖頻迴路自對準之次諧波注入鎖定四相位壓控振盪器量測 126
4.5 總結 138
第5章 結論 141
參考文獻 142
參考文獻 [1] B. Afshar and A. M. Niknejad, “A robust 24 mW 60 GHz receiver in 90 nm standard CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2008, pp. 182–183.
[2] K. Kang, F. Lin, D.-D. Pham, J. Brinkhoff, C.-H. Heng, Y. X. Guo, and X. Yuan, “A 60-GHz OOK receiver with an on-chip antenna in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1720–1731, Sep. 2010.
[3] K. Okada et al., “A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE 802.15.3c,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2988–3004, Dec. 2011.
[4] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-StateCircuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
[5] A. Arbabian, S. Callender, S. Kang, B. Afshar, J.-C. Chien, and A.Niknejad, “A 90 GHz hybrid switching pulsed-transmitter for medicalimaging,” IEEE J. Solid-State Circuits, vol. 45, no. 12, pp. 2667–2681,Dec. 2010.2113, Aug. 2009.
[6] D. Murphy, Q. J. Gu, Y.-C. Wu, H.-Y. Jian, Z. Xu, A. Tang, F. Wang, and M.-C. F. Chang, “A low phase noise, wideband and compact CMOS PLL for use in a heterodyne 802.15.3c transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp.1606-1617, Jul. 2011.
[7] A. Arbabian, S. Kang, S. Callender, J.-C. Chien, B. Afshar, and A.Niknejad, “A 94 GHz mm-wave to baseband pulsed-radar for imagingand gesture recognition,” IEEEInt. Symp. on VLSI Design, Automation and Test,Jun. 2012, pp. 56-57.
[8] A. Arbabian, S. Callender, S. Kang, M. Rangwala, and A. Niknejad, “A 94 GHz mm-wave-to-baseband pulsed-radar transceiver with applications in imaging and gesture recognition,” IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 1055–1071, Apr. 2013.
[9] X. Zhang, X. Zhou, and A.S. Daryoush, “A theoretical and experimental study of the noise behavior of subharmonically injection locked local oscillators,” IEEE Trans. Microw. Theory Tech., vol.40, no.5, pp.895-902, May 1992.
[10] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813-821, Jun. 1999.
[11] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.435-438, Jun. 2008.
[12] K. Yamamoto and M. Fujishima, “55GHz CMOS frequency divider with 3.2GHz locking range,” in Proc. Solid-State Circuits Conf., pp. 135-138, Sept. 2004.
[13] H. Wu and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 /spl mu/m CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers , pp.412-413, Feb. 2001.
[14] J.-C. Chien and L.-H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.544-621, Feb. 2007.
[15] K.-H. Tsai, L.-C. Cho, J.-H. Wu, S.-I. Liu, “3.5mW W-band frequency divider with wide locking range in 90nm CMOS technology,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper, pp. 466-628, Feb. 2008.
[16] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
[17] S.-L. Jang, C.-F. Lee, and W.-H. Yen, “A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 2, pp. 142-144, Feb. 2008.
[18] H. Wu and L. Zhang, "A 16-to-18GHz 0.18-μm Epi-CMOS Divide-by-3 Injection-Locked Frequency Divider," in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2482-2491, Feb. 2006.
[19] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, “A wide-locking Range ÷3 injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 390-392, Jul. 2010.
[20] X.-P. Yu, A.van Roermund, X.-L. Yan, H. M. Cheema, and R. Mahmoudi, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon.s Lett., vol. 19, no. 9, pp. 575-577, Sept. 2009.
[21] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-Tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229-231, Apr. 2010.
[22] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory. Tech., vol. 60, no. 6, pp.1617-1625, Jun. 2012.
[23] K. Yamamoto and M. Fujishima, “70GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 2472-2481, Feb. 2006.
[24] P. Mayr, C. Weyers, and U. Langmann, “A 90GHz 65nm CMOS injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp.198-596, Feb. 2007.
[25] S.-L. Jang, C.-C. Liu, and C.-W. Chung, “A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 236-238, Apr. 2009.
[26] S.-H. Lee, S.-L. Jang, and Y.-H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 5, pp. 373-375, May 2007.
[27] S-L Jang, Y.-H. Chuang, S.-H. Lee, and J.-J. Chao, “Circuit techniques for CMOS divide-by-four frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 217-219, Mar. 2007.
[28] M.-C. Chuang, J.-J. Kuo, C.-H. Wang, and H. Wang, “A 50 GHz divide-by-4 injection lock frequency divider using matching method,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 5, pp. 344-346, May 2008.
[29] H.-H. Hsieh, H.-S. Chen, and L.-H. Lu, “A V-Band divide-by-4 direct injection-locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 2, pp. 393-405, Feb. 2011.
[30] J. R. Hu and B. P. Otis, “A 3 μW, 400 MHz divide-by-5 injection-locked frequency divider with 56% lock range in 90nm CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.665-668, Jun. 2008.
[31] P.-K. Tsai, T.-H. Huang, and T.-H. Pand, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” Electronics Lett., vol. 46, no. 14, pp.1003-1004, Jul. 2010.
[32] Y. H. Lin and H. Wang, "Design and Analysis of W-Band Injection-Locked Frequency Divider Using Split Transformer-Coupled Oscillator Technique," in IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 1, pp. 177-186, Jan. 2018.
[33] Y. L. Yeh, Meng-Han Li and H. Y. Chang, "A W-band divide-by-1.5 injection-locked frequency divider in 90 nm CMOS process," 2014 IEEE MTT-S International Microwave Symposium (IMS2014), Tampa, FL, 2014, pp. 1-4.
[34] Y. W. Chen, T. N. Luo, H. Cruz and Y. J. E. Chen, "A W-Band Harmonically Enhanced CMOS Divide-by-Three Frequency Divider," in IEEE Microwave and Wireless Components Letters, vol. 24, no. 4, pp. 257-259, April 2014.
[35] S. W. Chu and C. K. Wang, "An 85-GHz injection-locked frequency divider with current-reuse pre-amplifier technique," IEEE Asian Solid-State Circuits Conference 2011, Jeju, 2011, pp. 89-92.
[36] K. H. Tsai, L. C. Cho, J. H. Wu and S. I. Liu, "3.5mW W-Band Frequency Divider with Wide Locking Range in 90nm CMOS Technology," 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, CA, 2008, pp. 466-628.
[37] L. Seongwoong, W. Badalawa, and M. Fujishima, “A 110 GHz inductor-less CMOS frequency divider,” in Proc. IEEE Asian Solid-State Circuits Conf., Nov. 2009, pp. 61–64.
[38] P. Mayr, C. Weyers, and U. Langmann, “A 90 GHz 65 nm CMOS injection-locked frequency divider,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2007, pp. 189–199.
[39] L. C. Cho, K. H. Tsai, C. C. Hung, and S. I. Liu, “93.5-109.4 GHz CMOS injection-locked frequency divider with 15.3% locking range,” in Symp. VLSI Circuits Dig. Tech. Papers, 2008, pp. 86-87.
[40] M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang, “60 GHz CMOS divide-by-5 injection-locked frequency divider with an open-stub-loaded floating-source injector,” IEEE RFIC Symp., Jun. 2011, pp.1-4.
[41] 李銘偉,24 GHz 與60 GHz CMOS 低功耗壓控振盪器及高次諧波除頻器之毫米波射頻晶片研製,國立成功大學電腦與通信工程研究所碩士論文,民國99年。
[42] 黃致勝,微波及毫米波注入式除頻器與振盪器暨射頻前端應用,國立中央大學電機工程研究所碩士論文,民國100年。
[43] L. Wang, Y. Z. Xiong, S. M. Hu, and T. G. Lim, “A 0.13-μm HBT divide-by-6 injection-locked frequency divider,” 2011 IEEE ASSC Conf., Nov. 2011, pp.97-100.
[44] P.-H. Feng, and S.-H. Liu, “A Current-reused injection-locked frequency multiplication/division circuit in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1523-1532, Apr. 2013.
[45] T. Siriburanon, W. Deng, A. Musa, K. Okada, and A. Matsuzawa, “A 13.2% loking-range divide-by-6, 3.1mW, ILFD using even-harmonic-enhanced direct injection technique for millimeter-wave PLLs, ” IEEE European Solid-State Circuits Conf., 2013, pp. 403-406.
[46] 廖彥涵,微波毫米波寬頻振盪器與鎖相迴路之研製,國立中央大學電機工程研究所碩士論文,民國102年。
[47] 林宗憲,注入鎖定除頻器之研究及其鎖相迴路應用,國立中央大學電機工程研究所碩士論文,民國102年。
[48] Yu-Hang Wong, Wei-Heng Lin, Jeng-Han Tsai and Tian-Wei Huang, "A 50-to-62GHz wide-locking-range CMOS injection-locked frequency divider with transformer feedback," IEEE RFIC Symp. Dig., Atlanta, GA, 2008, pp. 435-438.
[49] Y. T. Chen, M. W. Li, T. H. Huang and H. R. Chuang, "A V-Band CMOS Direct Injection-Locked Frequency Divider Using Forward Body Bias Technology," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 396-398, July 2010.
[50] A. Katz, O. Degani and E. Socher, "Modeling and design of a low-power injection-locked frequency divider in 90nm CMOS for 60GHz applications," 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Phoenix, AZ, 2011, pp. 61-64.
[51] X. P. Yu, H. M. Cheema, R. Mahmoudi, A. van Roermund and X. L. Yan, "A 3 mW 54.6 GHz Divide-by-3 Injection Locked Frequency Divider With Resistive Harmonic Enhancement," IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 575-577, Sept. 2009.
[52] J. Sun, C. C. Boon, F. Meng, X. Yi and W. M. Lim, "A V-Band CMOS Divide-by-Three ILFD With Frequency-Dependent Injection Enhancement," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 11, pp. 727-729, Nov. 2015.
[53] M. Li, P. Wang, T. Huang, and H. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 3, pp. 679–685, Mar. 2012.
[54] M. Farazian, P. S. Gudem, and L. E. Larson, “A CMOS multi-phase injection-locked frequency divider for V-band operation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 239–241, Apr. 2009.
[55] S. M. Li, H. N. Yeh and H. Y. Chang, "A V -band 90-nm CMOS Divide-by-10 Injection-Locked Frequency Divider Using Current-Reused Topology," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 1, pp. 76-78, Jan. 2018.
[56] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide-locking-range, millimeter-wave divide-by-5 injection-locked frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679-685, Mar. 2012.
[57] J. Lee, M. Liu, and H. Wang, “A 75-GHz phase-locked loop in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1414-1426, Jun. 2008.
[58] K.-H. Tsai and S.-I. Liu, “A 43.7mW 96GHz PLL in 65nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 276-277, Feb. 2009.
[59] C. Lee and S.-I. Liu, “A 58-to-60.4GHz frequency synthesizer in 90nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. of Tech. Papers, pp. 196-596, Feb. 2007.
[60] H. Hoshino, R. Tachibana, T. Mitomo, N. Ono, Y. Yoshihara, and R. Fujimoto, “A 60-GHz phase-locked loop with inductor-less prescaler in 90-nm CMOS,” Proc. Eur. Solid State Circuits Conf., pp. 472-475, Sept. 2007.
[61] D. Shin and K. J. Koh, "An Injection Frequency-Locked Loop—Autonomous Injection Frequency Tracking Loop With Phase Noise Self-Calibration for Power-Efficient mm-Wave Signal Sources," in IEEE Journal of Solid-State Circuits, vol. 53, no. 3, pp. 825-838, March 2018.
[62] K. Scheir, G. Vandersteen, Y. Rolain, and P. Wambacq, “A 57-to-66GHz quadrature PLL in 45nm digital CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 494-495, Feb. 2009.
[63] C. Lee, L.-C. Cho, J.-H. Wu, and S.-I. Liu, “A 50.8-53GHz clock generator using a harmonic-locked PD in 0.13-μm CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 5, pp. 404-408, May 2008.
[64] K.-H. Tsai and S.-I. Liu, “A 62–66.1GHz phase-locked loop in 0.13um CMOS technology,” in IEEE Int. VLSI Design, Automation and Test, pp.113-116, Apr. 2008.
[65] H.-K. Chen, T. Wang, and S.-S. Lu, “A millimeter-wave CMOS triple-band phase-locked loop With A Multimode LC-Based ILFD,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1327-1338, May 2011.
[66] S. Kang, J.-C. Chien, and A. M. Niknejad, “A 100GHz phase-locked loop in 0.13μm SiGe BiCMOS process,” in Proc. IEEE Radio Freq. Integr. Circuits Symp., pp.1-4, Jun. 2011.
[67] S. Shahramian, A. Hart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “Design of a dual W- and D-band PLL,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
[68] K.-H. Tsai and S.-I. Liu, “A 104-GHz phase-locked loop using a VCO at second pole frequency,” IEEE Trans. Very Large Scale Integr. Syst., vol. 20, no. 1, pp. 80-88, Jan. 2012.
[69] B.-Y. Lin and S.-I. Liu, “A 132.6-GHz phase-locked loop in 65 nm digital CMOS,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 58, no. 10, pp. 617-621, Oct. 2011.
[70] T.-Y. Chang, C.-S. Wang, and C.-K. Wang, “A low power W-band PLL with 17-mW in 65-nm CMOS technology,” in Proc. IEEE Asian Solid-State Circuits Conf., pp. 81-84, Nov. 2011.
[71] C.-C. Wang, Z. Chen, and P. Heydari, “W-Band silicon-based frequency synthesizers using injection-locked and harmonic triplers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1307-1320, May 2012.
[72] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[73] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C.-P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, and M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp.1-3, Jun. 2012.
[74] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[75] A. Musa, R. Murakami, T. Sato, W. Chaivipas, K. Okada, and A. Matsuzawa, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp.2635-2649, Nov. 2011.
[76] C.-Y. Wu, M.-C. Chen, and Yi-Kai Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-μm CMOS for V-Band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629-1636, Jul. 2009.
[77] N. D. Dalt, S. Deksen, P. Greco, C. Sandner, H. Schmid, and K. Strohmayer, “A fully integrated 2.4 GHz LC-VCO frequency synthesizerw with 3 ps jitter in 0.18 μm digital standard CMOS copper technology,” in Proc. Eur. Solid-State Device Research Conf., pp. 415-418, Sep. 2002.
[78] T.N. Luo and Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection-locked CMOS frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 3, pp.620-625, Mar. 2008.
[79] J.-L. Li, S.-W. Qu, and Q. Xue, “A theoretical and experimental study of injection-locked fractional frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2399-2408, Nov. 2008.
[80] J. Yuan and C. Svensson, “High-speed CMOS circuit technique,” IEEE J. Solid-State Circuits, vol. 24, no. 1, pp. 62-70, Feb. 2004.
[81] U. Singh and M. M. Green, “High-frequency CML clock divider in 0.13-μm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658-1661, Aug. 2005.
[82] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594-601, Apr. 2004.
[83] B. Razavi, RF Microelectronics, Prentice-Hall, 1998
[84] 劉深淵、楊清淵,鎖相迴路,滄海書局,民國100年。
[85] A. E. Sieman, Lasers, CA: University Science Books, 1986.
[86] R. R. Ward, The living Clocks, New York: Alfred Knopf, 1971.
[87] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sep. 2004.
[88] B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw-Jill, 2001, ch.2.
[89] A. Hajimiri and T. H. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
[90] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13 μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409-2415, Nov. 2008.
[91] B.-Y. Lin and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250-1264, Jun. 2011.
[92] A. Musa, K. Okada, and A. Matsuzawa, “Progressive mixing technique to widen the locking range of high division-ratio injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 3, pp. 1161-1173, Mar. 2013.
[93] “Sonnet User’s Guide,” 12th ed Sonnet Software Inc. North Suracuse, NY, 2009.
[94] A. Djemouai, M. Sawan, and M. Slamani, "New 200 MHz frequency-locked loop based on new frequency-to-voltage converters approach," in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 1999), vol. 2, Orlando, USA, May 1999, pp. 89-92.
[95] D. Borio, L. Camoriano, L. Lo Presti, M. Fantino, "DTFT-Based Frequency Lock Loop for GNSS Applications," IEEE Transaction on Aerospace and Electronic Systems, vol 44, No 2, April 2008.
[96] 高曜煌,射頻鎖相迴路IC設計,第二章,滄海書局,民國94年。
[97] 劉深淵、楊清淵,鎖相迴路,第一章、第二章,滄海書局,民國100年。
[98] 黃書彥,鎖頻迴路及追蹤與保持放大器之研製,國立中央大學電機工程研究所碩士論文,民國104年
[99] H. T. Bui et al., “Design of a high-speed differential frequency-tovoltage converter and its application in a 5 GHz frequency locked loop,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no.4, pp. 766–774, Apr. 2008.
[100] L. Ye, Y. Wang, C. Shi, H. Liao, and R. Huang, “A W-band divider-less cascading frequency synthesizer with push-push ×4 frequency multiplier and sampling PLL in 65nm CMOS,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[101] A. Tang, D. Murphy, G. Virbila, F. Hsiao, S.-W. Tam, H.-T. Yu, H.-H. Hsieh, C. P. Jou, Y. Kim, A. Wong, A. Wong, Y.-C. Wu, M.-C. F. Chang, “D-band frequency synthesis using a U-band PLL and frequency tripler in 65nm CMOS technology,” in IEEE MTT-S Int Microw. Symp. Dig., Jun. 2012, pp. 1-3.
[102] G. Liu, A. Trasser, and H. Schumacher, “A 64–84-GHz PLL with low phase noise in an 80-GHz SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 12, pp. 3739-3748, Dec. 2012.
[103] Z. Xu, Q. J. Gu, Y.-C. Wu, H.-Y. Jian and M.-C. F. Chang, “A 70-78 integrated CMOS frequency synthesizer for W-Band satellite communications,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 12, pp. 3206-3218, Dec. 2011.
[104] Shahramian, AdamHart, A. Tomkins, A. C. Carusone, P. Garcia, P. Chevalier, and S. P. Voinigescu, “A low phase noise quadrature injection locked frequency synthesizer for mm-wave applications,” IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2635-2649, Nov. 2011.
[105] M. Tabesh, J. Chen, C. Marcu, L. Kong, S. Kang, A. M. Niknejad, and E. Alon, “A 65 nm CMOS 4-element sub-34 mW/element 60 GHz phased-array transceiver,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 3018-3032,Dec. 2011.
[106] C.-Y. Wu, M.-C. Chen, and Y.-K. Lo, “A phase-locked loop with injection-locked frequency multiplier in 0.18-μm CMOS for V-band applications,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1629–1636, July 2009.
[107] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5-10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-m CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862-1872, Nov. 2004.
[108] C. F. Liang and K.J. Hsiao, “An injection-locked ring PLL with self-aligned injection window,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 90-92, Feb. 2011.
[109] B. M. Helal, C.-M. Hsu, K. Johnson, and M. H. Perrott, “A low jitter programmable clock multiplier based on a pulse injection-locked oscillator with a highly-digital tuning Loop,” IEEE J. Solid-State Circuits, vol. 44, pp. 1391-1400, May 2009.
[110] I-T. Lee, Y.-J. Chen, S.-I. Liu, C.-P. Jou, F.-L. Hsueh, and H.-H. Hsieh, “A divider-less sub-harmonically injection-locked PLL with self-adjusted injection timing ” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 414-415, Feb. 2013.
[111] Y.-C. Huang and S.-I. Liu, “A 2.4 GHz sub-harmonically injection-locked PLL with self-calibrated injection timing” IEEE Int. Solid-State Circuits Conf., Tech. Dig., pp. 338-341, Feb. 2012.
[112] J. Lee, and H. Wang, "Study of subharmonically injection-locked PLLs," IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1539-1553, May 2009.
[113] B. M. Helal, M. Z. Straayer, G.-Y. Wei, and M. H. Perrott, “A highly digital MDLL-based clock multiplier that leverages a self-scrambling time-to-digital converter to achieve subpicosecond jitter performance,” IEEE J. Solid-State Circuits, vol. 43, pp. 855-863, Apr. 2008.
[114] F.-R. Liao and S.-S. Lu, "A programmable edge-combining DLL with a current-splitting charge pump for spur suppression,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, pp. 946-950, Dec. 2010.
[115] R. C. H. v. d. Beek, C. S. Vaucher, D. M. W. Leenaerts, E. A. M. Klumperink, and B. Nauta, “A 2.5–10-GHz clock multiplier unit with 0.22-ps RMS jitter in standard 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1862–1872, Nov. 2004.
[116] L.-C. Cho, C. Lee, and S.-I. Liu, “A 1.2-V 37-38-GHz eight-phase clock generator in 0.13-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 42, pp. 1261-1270, Jun. 2007.
[117] S. Kang et al., “A W-band low-noise PLL with a fundamental VCO in SiGe for millimeter-wave applications,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2390–2404, Oct. 2014.
[118] 詹駿清,毫米波注入鎖定振盪器及鎖頻迴路之研究,國立中央大學電機工程研究所碩士論文,民國104年。
[119] 葉彥良,應用於微波及毫米波鎖相迴路之金氧半場效電晶體注入鎖定振盪器研究,國立中央大學電機工程研究所博士論文,民國102年
[120] H.-Y. Chang, Y.-L. Yeh, Y.-C. Liu, M.-H. Li, and K. Chen, “A low jitter low phase noise 10-GHz sub-harmonically injection-locked PLL with self-aligned DLL in 65 nm CMOS technology,” IEEE Trans. Microwave Theory & Tech., vol. 62, no. 03, pp. 543-555, Mar. 2014.
[121] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107–1118, May 2005.
[122] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig., Jun. 2009, pp. 75-78.
[123] Y. Mo, E. Skafidas, R. Evans, and I. Mareels, “A 40 GHz Power Efficient Static CML Frequency Divider in 0.13-μm CMOS Technology for High Speed MilimeterWave Wireless Systems,” IEEE ICCSC 2008, pp. 812-815.
[124] A. Pottbacker, U. Langmann, and H.-U. Schreiber “A Si bipolar phase and frequency detector IC for clock extraction up to 8 Gb/s,” IEEE J. Solid-State Circuits, vol. 27, no. 12, pp. 1747-1751, Dec. 1992.
[125] M. Huang, C.-H. Yu, J.-H. Tsai, and T.-W. Huang, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 μm COMS technology,” Proceedings IEEE Asia Pacific Microwave Conf., pp 643-645, Dec. 2012.
[126] A. W. L. Ng, G. C. T. Leung, K.-C. Kwok, L. L. K. Leung, and H.C. Luong, “A 1-V 24-GHz 17.5 mW phase-locked loop in a 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp.1236–1244, Jun. 2006.
[127] Y.-H. Peng, and L.-H. Lu, “A Ku-band frequency synthesizer in 0.18-m CMOS technology,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 4, pp. 256-258, Apr. 2007.
[128] Y.-H. Peng, and L.-H. Lu, “A 16-GHz triple-modulus phase-switching prescaler and its application to a 15-GHz frequency synthesizer in 0.18-m CMOS,” IEEE Trans. Microw. Theory Tech., vol.55, no.1, pp.44-51, Jan. 2007.
[129] S.-J. Li, H.-H. Hsieh, and L.-H. Lu, “A 10 GHz phase-locked loop with a compact low-pass filter in 0.18 m CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 19, no. 10, pp. 659-661, Oct. 2009.
[130] P.-S. Weng and L.-H. Lu, “A 30 GHz CMOS frequency synthesizer for V-band applications,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 8, pp. 433-435, Aug. 2012.
[131] T.-H. Lin, and Y.-J. Lai, “An agile VCO frequency calibration technique for a 10-GHz CMOS PLL,” in IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 340–349, Feb. 2007.
[132] X. Gao, E. A. M. Klumperink, P. F. J. Geraedts, and B. Nauta, “Jitter analysis and a benchmarking figure-of-merit for phase-locked loops,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 117-121, Feb. 2009.
[133] “Optimization of quadrature modulator performance,” Technical Notes and Articles, RF Micro Devices Inc.
[134] C. H. Lin, Y. C. Liu, “A 60-GHz low DC power self-injection coupling CMOS quadrature voltage-controlled oscillator with high quadrature accuracy”, IEEE International Microwave Symposium 2013.
[135] W. L. Chan, J. R. Long, “A 56-to-65 GHz Injection-Locked Frequency Tripler with Quadrature Outputs in 90-nm CMOS”, IEEE J. of Solid-State Circuits, Vol. 43, no. 12, pp. 2739-2746, December 2008.
[136] A. Musa et al., “A 58-63.6GHz quadrature PLL frequency synthesizer in 65nm CMOS,” A-SSCC Dig. Tech. Papers, pp.189-192, November 2010.
[137] G. Mangraviti, “A 52-66GHz Subharmonically Injection-Locked Quadrature Oscillator with 10 GHz Locking Range in 40nm LP CMOS,” RFIC Symposium, pp. 309–312, June 2012.
[138] D. Shim, C. Mao, S. Sankaran, and K. K. O, “150 GHz complementary anti-parallel diode frequency tripler in 130 nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 1, pp. 43-45, Jan. 2011.
[139] T. Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 175 GHz HBV frequency quintupler with 60 mW output power,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 76-78, Feb. 2012.
[140] C. Mao, C. S. Nallani, S. Sankaran, E. Seok, and K. K. O, “125-GHz diode frequency doubler in 0.13-μm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1531-1538, May 2009.
[141] Y. Lee, J. R. East, and L. P. B. Katehi, “High efficiency W-band GaAs monolithic frequency multipliers,” IEEE Trans. Microw. Theory Tech., vol. 52, pp. 529-535, Feb. 2004.
[142] G.-L. Tan and G. M. Rebeiz, “High-power millimeter-wave planar doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, vol. 3, pp. 1601-1604.
[143] U. R. Pferiffer, C.Mishra, R. M. Rassel, S. Pinkett, and S. K. Reynolds, “Schottky barrier diode circuits in silicon for future millimeter-wave and Terahertz applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 2, pp. 364-371, Feb. 2008.
[144] C.-S. Lin, P.-S. Wu, M.-C. Yeh, J.-S. Fu, H.-Y. Chang, K.-Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190-1199, June 2007.
[145] Y.-G. Kim, K. W. Kim, and Y.-K. Cho, “A planar ultra-wideband balanced doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1243-1246.
[146] R. Bitzer, “Planar broadband MIC balanced frequency doublers,” in IEEE MTT-S Int. Microw. Symp. Dig., July 1991, vol. 1, pp. 273-276.
[147] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Microw. Symp. Dig., May 1994, vol. 1, pp. 443-446.
[148] Bryllert, A. Malko, J. Vukusic, and J. Stake, “A 25-75 GHz miniature double balanced frequency doubler in 0.18-μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, Apr. 2008.
[149] T. Kiuru, J. Mallat, A. V. Raisanen, and T. Narhi, “Compact broadband MMIC Schottky frequency tripler for 75–140 GHz”, in Proc. Eur. Micro. Integr. Circuits Conf., Oct. 2011, pp. 108-111.
[150] Y. Wang, W. L. Goh, Y.-Z. Xiong, “A 9% power efficiency 121-to-137GHz phase-controlled push-push frequency quadrupler in 0.13μm SiGe BiCMOS,” in IEEE Int. Solid-State Circuits Conf., Tech. Dig., Feb. 2012, pp. 262-264.
[151] Y. Campos-Roca, C. Schworer, A. Leuther, and M. Seelmann-Eggebert “G-band metamorphic HEMT-based frequency multiplier,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2893–2992, Jul. 2006.
[152] A. Boudiaf, D. Bachelet, and C. Rumelhard, “A high-efficiency and low-phase-noise 38 GHz pHEMT MMIC tripler,” IEEE Trans. Microw. Theory Tech., vol. 48, no. 12, pp. 2546–2553, Dec. 2000.
[153] J. C. Chiu, C. P. Chang, M. P. Houng, and Y. H.Wang, “A 12–36 GHz PHEMT MMIC balanced frequency tripler,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 19–21, Jan. 2006.
[154] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, E. Sanchez, M. C. Curras-Francos, W. Bronner, A. Hulsmann, and M. Schlechtweg, “An optimized 25.5–76.5 GHz PHEMT-based coplanar frequency tripler,” IEEE Microw. Guided Wave Lett., vol. 10, no. 6, pp. 242–244, Jun. 2000
[155] N.-C. Kuo, Z.-M. Tsai, K. Schmalz, J. C. Scheytt, and H. Wang, “A 52-75 GHz frequency quadrupler in 0.25-μm SiGe BiCMOS process”, in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2010, pp. 365-368.
[156] E. Ojefors, B. Heinemann and U. R. Pfeiffer, “A 325 GHz Frequency Multiplier Chain in a SiGe HBT Technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. May 2010, pp. 91-94.
[157] E. Ojefors, B. Heinemann, and U. R. Pfeiffer, “Active 220- and 325-GHz frequency multiplier chains in an SiGe HBT technology,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 5, pp. 1311-1318, May 2011.
[158] J.-H. Chen, and H. Wang, “A high gain, high power K-band frequency doubler in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 522-524, Sept. 2010.
[159] K. Y. Lin, J. Y. Huang, and S. C. Shin, “A K-band CMOS distributed doubler with current-reuse technique,” IEEE Mircow. Wireless Compon. Lett., vol. 19, no. 5, pp. 308-310, May 2009.
[160] K. Yamamoto, “A 1.8-V operation 5-GHz-band CMOS frequency doubler using current-reuse circuit design technique,” IEEE J. Solid State Circuits, vol. 40, no. 6, pp. 1288-1295, Jun. 2005.
[161] N.-C. Kuo, J.-C. Kao, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A 60-GHz frequency tripler with gain and dynamic-range enhancement,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 660-671, Mar. 2011.
[162] U. J. Lewark, A. Tessmann, H. Massler, S. Wagner, A. Leuther, and I. Kallfass, “300 GHz active frequency-tripler MMICs,” in Proc. Eur. Micro. Integr. Circuits Conf., Sept. 2011, pp. 236-339.
[163] F. Giannini and G. Leuzzi, Nonlinear Microwave Circuit Design, John Wiley & Sons, Ltd, England, 2004.
[164] F.-H. Huang, C.-K. Lin, and Y.-J. Chan, “V-band GaAs pHEMT cross-coupled sub-harmonic oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 473–475, Aug. 2006.
[165] S. Kishimoto, K. Maruhashi, M. Ito, T. Morimoto, Y. Hamada, and K. Ohata, “A 60-GHz-band subharmonically injection locked VCO MMIC operating over wide temperature range,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005, pp. 1689–1692.
[166] K. Kamogawa, T. Tokumitsu, and I. Toyoda, “A 20-GHz-band subharmonically injection-locked oscillator MMIC with wide locking range,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 233–235, Aug. 1997.
[167] K. Kamogawa, T. Tokumitsu, and M. Aikawa, “Injection-locked oscillator chain: A possible solution to millimeter-wave MMIC synthesizers,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 9, pp. 1578–1584, Sept. 1997.
[168] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 8, pp. 1869–1878, Aug. 2008.
[169] W. K. Chan and J. R. Long, “A 56–65 GHz injection-locked frequency tripler with quadrature outputs in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2739–2746, Dec. 2008.
[170] S.-W. Tam, E. Socher, A. Wong, Y. Wang, L. D. Vu, and M.-C. F. Chang, “Simultaneous sub-harmonic injection-locked mm-wave frequency generators for multi-band communications in CMOS,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. Dig. Jun. 2008, pp. 131–134.
[171] Y.-L. Yeh, C.-S. Huang, and H.-Y. Chang, “A 20.7% locking range W-band fully integrated injection-locked oscillator using 90 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2012, pp. 1-3.
[172] Z. Chen and P. Heydari, “An 85-95.2 GHz transformer-based injection-locked frequency tripler in 65nm CMOS,” in IEEE MTT-S Int. Microw. Symp. Dig., May. 2010, pp. 776–779.
[173] C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection-locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1649–1658, Aug. 2007.
[174] S. Verma, H. R. Rategh, and T. H. Lee, “A unified model for injectionlocked frequency dividers,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1015-1027, Jun. 2003.
[175] C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int Microw. Symp. Dig., June 2009, pp. 1293–1296.
[176] Y.-L. Yeh, and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 06, pp. 1617-1625, Jun. 2012.
[177] H.-Y. Chang, Y.-H. Cho, M.-F. Lei, C.-S. Lin, T.-W. Huang, and H. Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13-m CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 739-742.
[178] M. Chua, and K. W. Martin, “1 GHz programmable analog phase shifter for adaptive antennas,” in Proc. IEEE Custom Integrated Circuit Conf., May 1998, pp.11-14.
[179] J. J. Kim, and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure,” in IEEE Int. Solid-State Circuit Conf. Tech. Dig., Feb. 2005, pp. 430-431.
[180] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 75-78.
[181] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[182] C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1293-1296.
[183] Y.-H. Kuo, J.-H. Tsai, and T.-W. Huang, “A 1.7-mW, 16.8% frequency tuning, 24-GHz transformer-based LC-VCO using 0.18-m CMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 79-82.
[184] T.-H. Huang, and Y.-R. Tseng, “A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct. 2008.
[185] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 10, pp. 446-448, October 2003.
[186] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” in IEEE RFIC Symp. Dig., Jun 2004, pp. 269–272.
[187] M. Hossain and A. Chan Carusone, “20 GHz low power QVCO and de-skew techniques in 0.13-m digital CMOS,” in IEEE Custom Integrated Circuits Conf. pp. 447-450, 2008.
[188] S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, and A. L. Scholtz “A 28-GHz monolithic integrated quadrature oscillator in SiGe Bipolar Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 135-137, January 2003.
[189] W. L. Chan, H. Veenstra, and J. R. Long, “A 32GHz quadrature LC-VCO in 0.25μm SiGe BiCMOS technology,” in 2005 Int. Solid-State Circuit Conf. Dig., San Francisco, USA, pp. 538-539.
[190] C.-H. Lin and H.-Y. Chang, “A low phase noise low DC power quadrature voltage-controlled oscillator using a 0.18-m CMOS process,” in Proc. EuMIC, pp. 28-29, Sept. 2009.
[191] C.-L. Yang and Y.-C. Chiang, “Low phase-noise low-power CMOS VCO constructed in current-reused configuration,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 2, pp. 136-138, Feb. 2008.
[192] H.-Y. Chang, and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46–59, Jan. 2012.
[193] S.-Y. Lee and C.-Y. Chen, “Analysis and digital of a wide-tuning-range VCO with quadrature outputs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12, pp. 1209-1213, Dec. 2008.
[194] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, Jun. 2001.
[195] M. S. J. Steyaert, J. Janssens, B. De Muer, M. Borremans, and N. Itoh, “A 2-V CMOS cellular transceiver front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1895-1907, Dec. 2000.
[196] A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi, “A 900 MHz LC-oscillator with quadrature outputs,” in 1996 Int. Solid-State Circuit Conf. Dig., San Francisco, USA, pp. 392-393.
[197] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, Jun. 2001.
[198] W. Z. Chen, C. L. Kuo, and C. C. Liu, “10 GHz quadrature-phase voltage controlled oscillator and prescaler,” IEEE 29th European Solid-State Circuits Conf., pp. 361-364, Sept. 2003.
[199] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
[200] 林紀賢,注入鎖定非線性單晶微波積體電路之研究,國立中央大學電機工程研究所博士論文,民國101年。
[201] 邱垣達,低功耗低相位雜訊差動及四相位單晶片微波積體電路壓控振盪器之研究,國立中央大學電機工程研究所碩士論文,民國100年。
[202] Fredrik Tillman, Niklas Troedsson and Henrik Sjoland, “A 1.2 volt 1.8GHz CMOS quadrature front-end,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 362–365, Jun. 2004.
[203] 邱煥凱,毫米波主被動目標偵測關鍵前端積體電路研製,科技部專題研究計畫書,民國106年
[204] Y. C. Chang, Y. C. Hsu, S. G. Lin, Y. Z. Juang, and H. K. Chiou, “On-wafer single contact quadrature accuracy measurement using receiver mode in four-port vector network analyzer,” IEEE MTT-S Int. Microwave Symp. Dig., pp. 371–374, 2008.
[205] 李昇洺,V及D頻段高除頻數注入鎖定除頻器與四相位鎖頻迴路之研製,國立中央大學電機工程研究所碩士論文,民國106年。
指導教授 張鴻埜 審核日期 2018-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明