博碩士論文 104521088 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.204.191.31
姓名 陳俊豪(Jun-Hao Chen)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 利用智慧型控制之三相主動式電力濾波器的研製
(Design and Implementation of Three-Phase Active Power Filters with Intelligent Control)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製
★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
★ 多重地網系統之人身安全驗證與模擬★ 利用智慧型控制與主動式直軸訊號注入法之孤島偵測研究
★ 具主動功因調節之LED驅動器研製★ 應用於輕型電動車之智慧型錯誤容忍控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文建構一以三相三臂變流器為電路架構之主動式電力濾波器,以補償市電因非線性負載所引起的諧波電流,使得市電電流可補償為正弦波波形,而為提升諧波補償成效與改善非線性負載變動時直流鏈電壓的暫態響應,本文提出一非對稱歸屬函數之遞迴式機率模糊類神經網路控制器取代傳統的比例積分控制器。另一方面,本論文亦建構一以三相四臂變流器為電路架構之主動式電力濾波器,以補償市電因三相不平衡負載所引起的三相不平衡電流,使得市電電流可補償為三相平衡電流且抑制中性線電流,此外,為提升不平衡補償效果與改善三相不平衡負載變動時直流鏈電壓的暫態響應,亦提出一派翠機率模糊類神經網路控制器取代比例積分控制器。再者,本文將分別詳細介紹所提出之二種新式智慧型控制器的網路架構與線上學習法則,並且分別證明其收斂性。最後,本研究利用Texas Instruments TMS320F28335數位訊號處理器完成所提出的主動式電力濾波器,並且利用實驗結果證明主動式電力濾波器結合所提出之智慧型控制之補償成效及可行性。
摘要(英) A three-phase three-arm active power filter (APF) is proposed to compensate harmonic current under nonlinear load conditions in grid-connected operation in this study. In order to improve the regulation control of the DC-link voltage in the shunt APF under the variation of nonlinear load and to compensate the currents harmonic effectively, a novel recurrent probabilistic fuzzy neural network with an asymmetric membership function(RPFNN-AMF) controller is proposed to replace traditional proportional-integral (PI) controller. Moreover, a three-phase four-arm inverter-based active power filter is also proposed to compensate three-phase unbalanced currents under unbalanced load conditions in grid-connected operation in this study. Furthermore, to improve the regulation control of the DC-link voltage in the APF under the variation of three-phase unbalanced load and to compensate the three-phase unbalanced currents effectively, a novel Petri probabilistic fuzzy neural network (PPFNN) controller is proposed to replace traditional PI controller. In addition, the network structure, online learning algorithms and convergence analysis of the proposed two intelligent controllers are represented respectively in detail. Finally, the proposed two intelligent controllers to control the APF are implemented by the control platform using the Texas Instruments digital signal processor (DSP) TMS320F28335, and the effectiveness and the feasibility are verified by some experimental results.
關鍵字(中) ★ 主動式電力濾波器
★ 非對稱歸屬函數之遞迴式機率模糊類神經網路
★ 派翠機率模糊類神經網路
★ 直流鏈電壓控制
★ 負載變動
關鍵字(英) ★ active power filter
★ recurrent probabilistic fuzzy neural network with an asymmetric membership function
★ Petri probabilistic fuzzy neural network
★ DC-link voltage control
★ load changing
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文大綱 5
1.4 論文貢獻 6
第二章 主動式電力濾波器概論 7
2.1 前言 7
2.2 依儲能元件分類 7
2.3 依與系統連接之架構分類 8
2.3.1 串聯型主動式電力濾波器 8
2.3.2 並聯型主動式電力濾波器 9
2.3.3 混合型主動式電力濾波器 10
2.3.4 整合型電力品質調節器 12
2.4 主動式電力濾波器之選擇 12
第三章 系統架構與控制策略 14
3.1 前言 14
3.2 三相座標軸轉換 14
3.3 市電角度估測 15
3.4 負載瞬時實功率與虛功率計算 16
3.5 非線性負載補償之架構與控制策略 17
3.5.1 補償電流計算 18
3.5.2 直流鏈電壓控制 19
3.5.3 整體控制策略 20
3.6 不平衡負載補償之架構與控制策略 21
3.6.1 補償電流計算 21
3.6.2 直流鏈電壓控制 22
3.6.3 整體控制策略 22
第四章 非對稱歸屬函數之遞迴式機率模糊類神經網路 24
4.1 前言 24
4.2 非對稱歸屬函數之遞迴式機率模糊類神經網路架構 25
4.3 非對稱歸屬函數之遞迴式機率模糊類神經網路線上學習法則 27
4.4 非對稱歸屬函數之遞迴式機率模糊類神經網路收斂性分析 30
第五章 派翠機率模糊類神經網路 33
5.1 前言 33
5.2 派翠機率模糊類神經網路架構 34
5.3 派翠機率模糊類神經網路線上學習法則 36
5.4 派翠機率模糊類神經網路收斂性分析 38
第六章 硬體規劃與設計 40
6.1 前言 40
6.2 硬體規劃 40
6.2.1 非線性負載補償之硬體規劃 40
6.2.2 不平衡負載補償之硬體規劃 41
6.3 周邊電路設計 42
6.3.1 交流電流回授電路 43
6.3.2 交流電壓回授電路 43
6.3.3 直流電壓回授電路 44
6.3.4 保護電路 44
6.3.5 互鎖電路 45
6.4 數位訊號處理器 45
第七章 模擬與實驗結果 48
7.1 前言 48
7.2 模擬結果 48
7.2.1 非線性負載補償之模擬結果 48
7.2.2 不平衡負載補償之模擬結果 54
7.3 實驗結果 60
7.3.1 非線性負載補償之實驗結果 60
7.3.2 不平衡補償之實驗結果 72
第八章 結論與未來研究方向 84
8.1 結論 84
8.2 未來研究方向 85
附錄 86
IEEE Std 519 - 2014 86
參考文獻 88
作者簡歷 95
參考文獻

[1] J. Miret, L. G. de Vicuna, M. Castilla, J. Matas, and J. M. Guerrero, “Design of an analog quasi-steady-state nonlinear current-mode controller for single-phase active power filter,” IEEE Trans. Industrial Electronics, vol. 56, no. 12, pp. 4872-4881, December 2009.
[2] P. Lohia, M. K. Mishra, K. Karthikeyan, and K. Vasudevan, “A minimally switched control algorithm for three-phase four-leg VSI topology to compensate unbalanced and nonlinear Load,” IEEE Trans. Power Electronics, vol. 23, no. 4, pp. 1935-1944, July 2008.
[3] P. Kanjiya, V. Khadkikar, and H. H. Zeineldin, “A noniterative optimized algorithm for shunt active power filter under distorted and unbalanced supply voltages,” IEEE Trans. Industrial Electronic, vol. 60, no. 12, pp. 5376-5390, December 2013.
[4] R. L. A. Ribeiro, C. C. Azevedo, and R. M. Sousa, “A robust adaptive control strategy of active power filters for power-factor correction, harmonic compensation, and balancing of nonlinear Loads,” IEEE Trans. Power Electronics, vol. 27, no. 2, pp. 718-730, February 2012.
[5] R. Garde, S. Casado, M. Santamaria, and M. Aguado, “Power quality and stability analysis during islanded mode operation in a microgrid based on master-slave configuration,” in Proc. 2015 Saudi Arabia Smart Grid (SASG) IEEE Conf., 2015, pp. 1-8.
[6] M. A. M. Radzi and N. A. Rahim, “Neural network and bandless hysteresis approach to control switched capacitor active power filter for reduction of harmonics,” IEEE Trans. Industrial Electronics, vol. 56, no. 5, pp. 1477-1484, May 2009.
[7] B. Kedjar and K. Al-Haddad, “DSP-based implementation of an LQR with integral action for a three-phase three-wire shunt active power filter,” IEEE Trans. Industrial Electronics, vol. 56, no. 8, pp. 2821-2828, August 2009.
[8] P. Acuna, L. Moran, M. Rivera, J. Dixon, and J. Rodriguez, “Improved active power filter performance for renewable power generation systems,” IEEE Trans. Power Electronics, vol. 29, no.2, pp. 687-694, February 2014.
[9] M. Cirrincione, M. Pucci, G. Vitale, and A. Miraoui, “Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering,” IEEE Trans. Industrial Electronics, vol. 56, no. 8, pp. 3128-3143, August 2009.
[10] M. Cirrincione, M. Pucci, G. Vitale, and A. Miraoui, “Types-1 and -2 fuzzy logic controllers-based shunt active filter Id-Iq control strategy with different fuzzy membership functions for power quality improvement using RTDS hardware,” IET Power Electronics, vol. 6, no. 4, pp. 818-833, February 2013.
[11] R. R. Pereira, C. H. da Silva, L. E. B. da Silva, G. Lambert-Torres, and J. O. P. Pinto, “New strategies for application of adaptive filters in active power filters,” IEEE Trans. Industrial Applications, vol. 47, no. 3, pp. 1136-1141, May-June 2001.
[12] M. A. Mulla, C. Rajagopalan, and A. Chowdhury, “Compensation of three-phase diode rectifier with capacitive filter working under unbalanced supply conditions using series hybrid active power filter,” IET Power Electronics, vol. 7, no. 6, pp. 1566-1577, June 2014.
[13] V. Khadkikar, “Enhancing electric power quality using UPQC: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 29, no.2, pp. 2284-2297, May 2012.
[14] M. Cirrincione, M. Pucci, G. Vitale, and A. Miraoui, “Current harmonic compensation by a single-phase shunt active power filter controlled by adaptive neural filtering,” IEEE Trans. Industrial Electronics, vol. 56, no. 8, pp. 3128-3143, August 2009.
[15] H. Yi, F. Zhuo, Y. Zhang, Y. Li, W. Zhan, W. Chen, and J. Liu, “A source-current-detected shunt active power filter control scheme based on vector resonant controller,” IEEE Trans. Industrial Applications, vol. 50, no. 3, pp. 1953-1965, May-June 2010.
[16] Z. X. Zou, K. Zhou, Z. Wang, and M. Cheng, “Frequency-adaptive fractional-order repetitive control of shunt active power filters,” IEEE Trans. Industrial Electronics, vol. 62, no.3, pp. 1659-1688, March 2015.
[17] A. K. Panda and R. Patel, “Adaptive hysteresis and fuzzy logic controlled-based shunt active power filter resistant to shoot-through phenomenon,” IET Power Electronics, vol. 8, no. 10, pp. 1963-1977, September 2015.
[18] S. Rahmani, N. Mendalek, and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Industrial Electronics, vol. 57, no. 10, pp. 3364-3375, October 2010.
[19] D. L. Raokhande, D. R. Patil, and U. Gudaru, “Performance of series-shunt power quality compensator under unbalanced & distorted loading conditions,” in Proc. Control Applications (CCA) IEEE Conf., 2013, pp. 1147-1152.
[20] M. Kesler, and E. Ozdemir, “Synchronous-reference-frame-based control method for UPQC under unbalanced and distorted load conditions” IEEE Trans. Industrial Electronics, vol. 58, no. 9, pp. 3967-3975, September. 2011.
[21] C. C. Tsai, H. C. Huang, and S. C. Lin, “Adaptive neural network control of a self-balancing two-wheeled scooter,” IEEE Trans. Industrial Electronics, vol. 57, no. 4, pp. 1420-1428, July 2009.
[22] S. Cong and Y. Liang, “PID-like neural network nonlinear adaptive control for uncertain multivariable motion control systems,” IEEE Trans. Industrial Electronics, vol. 56, no. 10, pp. 3872-3879, October 2009.
[23] F. J. Lin, I. F. Sun, K. J. Yang, and J. K. Chang, “Recurrent fuzzy neural cerebellar model articulation network fault-tolerant control of six-phase permanent magnet synchronous motor position servo drive,” IEEE Trans. Fuzzy Systems, vol. 24, no. 1, pp. 153-167, February 2016.
[24] X. Jin, D. Srinivasan, and R. L. Cheu, “Classification of freeway traffic patterns for incident detection using constructive probabilistic neural networks,” IEEE Trans. Neural Networks, vol. 12, no. 5, pp. 1173-1187, September 2001.
[25] S. J. Hart, R. E. Shaffer, S. L. Rose-Pehrsson, and J. R. McDonald, “Using physics-based modeler outputs to train probabilistic neural networks for unexploded ordnance (UXO) classification in magnetometry surveys,” IEEE Trans. Geoscience and Remote Sensing, vol. 39, no. 4, pp. 797-804, April 2001.
[26] F. J. Lin, Y. S. Huang, K. H. Tan, Z. H. Lu, and Y. R. Chang, “Intelligent-controlled doubly fed induction generator system using PFNN,” Neural Computing and Applications, vol. 22, no. 7, pp. 1695-1712, June 2013.
[27] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Delivery, vol. 25, no. 1, pp. 102-112, January 2010.
[28] F. J. Lin and K. H. Tan, “Squirrel-cage induction generator system using probabilistic fuzzy neural network for wind power applications,” in Proc. Fuzzy Systems (FUZZ-IEEE) IEEE Conf, 2015, pp. 1-8.
[29] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for li-ion battery charger,” IEEE Trans. Power Electronics, vol. 27, no. 8, pp. 3782-3794, August 2012.
[30] H. Y. Pan, C. H. Lee, F. K. Chang, and S. K. Chang, “Construction of 96 asymmetric type 2 fuzzy membership function and application in time series prediction,” in Proc. Machine Learning and Cybernetics IEEE Conf, 2007, pp.2024-2030.
[31] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Industrial Electronics, vol. 54, no. 3, pp.1528-1536, June 2007.
[32] F. J. Lin, C. K. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using Takagi–Sugeno–Kang probabilistic fuzzy neural network control,” IEEE Trans. Industrial Electronics, vol. 62, no. 9, pp. 5516-5528, September 2015.
[33] C. F. Juang and J. S. Chen, “A recurrent fuzzy-network-based inverse modeling method for a temperature system control,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 37, no. 3, pp. 410-417, May 2007.
[34] S. H. Park and S. I. Han, “Robust-tracking control for robot manipulator with deadzone and friction using backstepping and RFNN controller,” IET Control Theory & Applications, vol. 5, no. 12, pp. 1397-1417, August 2011.
[35] P. Campolucci, A. Uncini, F. Piazza, and B. D. Rao, “On-line learning algorithms for locally recurrent neural networks,” IEEE Trans. Neural Networks, vol. 10, no. 2, pp. 253-271, March 1999.
[36] K. H. Tan, “Squirrel-cage induction generator system using wavelet Petri fuzzy neural network control for wind power applications,” IEEE Trans. Power Electronics, vol. 31, no. 7, pp. 5242-5254, July 2016.
[37] R. Zurawski and M. Zhou, “Petri nets and industrial applications: a tutorial,” IEEE Tran. Industrial Electronics, vol. 41, no. 6, pp. 567 -583, December 1994.
[38] H. Huang and H. Kirchner, “Formal specification and verification of modular security policy based on colored Petri nets,” IEEE Trans. Dependable and Secure Computing, vol. 8, no. 6, pp. 852-865, November - December 2011.
[39] Y. Y. Du, L. Qi, and M. C. Zhou, “Analysis and application of logical Petri nets to e-commerce systems,” IEEE Trans. Systems, Man, and Cybernetics: System, vol. 44, no. 4, pp. 468-481, April 2014.
[40] T. Nishi and Y. Tanaka, “Petri net decomposition approach for dispatching and conflict-free routing of bidirectional automated guided vehicle systems,” IEEE Trans. Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 42, no. 2, pp. 1230-1243, September 2012.
[41] Y. Y. Du, C. J. Jiang, and M. C. Zhou, “A petri-net-based correctness analysis of internet stock trading systems,” IEEE Trans. Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 1, pp. 93-99, January 2008.
[42] Y. S. Huang, Y. S. Weng, and M. C. Zhou, “Modular design of urban traffic-light control systems based on synchronized timed Petri nets,” IEEE Trans. Intelligent Transportation Systems, vol. 15, no. 2, pp. 93-99, April 2014.
[43] H. X. Li and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Systems, vol. 16, no. 4, pp. 898-908, August 2008.
[44] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235, TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
[45] IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems, IEEE Standards Association, 2014.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2017-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明