博碩士論文 104521092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:54.81.220.239
姓名 楊政樺(Zheng-Hua Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 改良凝聚式階層演算法及改良色彩空間影像技術於無線監控自走車之路徑追蹤
(Wireless Monitoring Self-Propelled Vehicle Based on Improved Agglomerative Hierarchical Algorithm and Color Space in Image Tracking)
相關論文
★ 影像處理運用於家庭防盜保全之研究★ 適用區域範圍之指紋辨識系統設計與實現
★ 頭部姿勢辨識應用於游標與機器人之控制★ 應用快速擴展隨機樹和人工魚群演算法及危險度於路徑規劃
★ 智慧型機器人定位與控制之研究★ 基於人工蜂群演算法之物件追蹤研究
★ 即時人臉偵測、姿態辨識與追蹤系統實現於複雜環境★ 基於環型對稱賈柏濾波器及SVM之人臉識別系統
★ 模糊類神經網路於六足機器人沿牆控制與步態動作及姿態平衡之應用★ 四軸飛行器之偵測應用及其無線充電系統之探討
★ 結合白區塊視網膜皮層理論與改良暗通道先驗之單張影像除霧★ 基於深度神經網路的手勢辨識研究
★ 人體姿勢矯正項鍊配載影像辨識自動校準及手機接收警告系統★ 模糊控制與灰色預測應用於隧道型機械手臂之分析
★ 模糊滑動模態控制器之設計及應用於非線性系統★ 階層式模糊控制及其在倒三角體系統之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文提出一種改進的即時追蹤演算法藉由改良凝聚式階層演算法和色彩空間,同時也結合了背景相減法、改良種子生長法和無線監控端,來實現即時追蹤自走車。在追蹤前對每個目標物進行顏色直方圖的建立與儲存,以便提升在追蹤時的速度。
由於計算機技術和半導體技術的進步,近年來處理器的速度大大提高。 越來越複雜的算法可以用於偵測或追蹤,並且目前相關的研究帶來了高效率的偵測和追蹤。科技的進步使的演算法在速度上取得了重大突破,可以實現偵測和追蹤系統。
基本上,過去幾年提出的物體跟追蹤法一般可分為以下幾類:基於區域式的追蹤,主動式輪廓追蹤,基於特徵的追蹤和基於模型的追蹤。雖然這些追蹤方法已經開發了很長時間,但仍然有許多問題需要解決。例如,複雜的背景和陰影可能會影響追蹤。本文使用改良的凝聚式階層演算法和改良顏色空間進行追蹤,可以有效地解決陰影問題。
摘要(英)
This paper proposes an improved tracking algorithm by using “agglomerative hierarchical algorithm ” and “ color space ” for real-time tracking of the targets, which combines three methods to realize an automatic tracking system in real-time on wireless monitoring self-propelled vehicles. There are three methods including the background subtraction method, the seeded region growing method, and the wireless monitoring system to construct the color histogram models for each targets. Finally, the obtained image tracking pictures can be saved into flash memory to speed up loading.
Due to the advance in computer technologies and the semiconductor technologies, the speed of the processors have been dramatically improved in recent years. More and more complex algorithms then can be used to detect or track objects, and the relating studies flourishes presently bringing about high efficiencies of identifying and tracking objects. It truly makes a major breakthrough in algorithms, and the real-time object tracking system can be achieved.
Basically, the object tracking methods proposed in the past years can be generally divided into these categories: region-based tracking, active contour-based tracking, feature-based tracking and model-based tracking. Although visual tracking has been developed for a long time, it still has many problems which needed to be solved. For example, the complex background and the shadow may have an influence on tracking object. This paper uses improved agglomerative hierarchical algorithm and color space for object tracking that can effectively solve the shadowing problems.
關鍵字(中) ★ 物體追蹤
★ 種子區域生長演算法
★ 改良凝聚式階層演算法
★ 改良型YUV
★ 行程標記法
關鍵字(英)
論文目次
目錄
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 簡介 1
1-2 研究動機 1
1-3 研究方法 2
1-4 文獻回顧與探討 2
1-5 主要成果與貢獻 5
1-6 論文架構 6
第二章 系統架構與系統描述 7
2-1 外部硬體 7
2-2 內部軟體 13
2-3 系統架構 17
第三章 偵測目標物與建模 19
3-1 RGB轉改良型YUV 20
3-2 目標物體偵測 21
3-2-1 連續影像相減法(Temporal difference) 21
3-2-2 光流法(Optical flow) 21
3-2-3 時間軸上的中間值法(Temporal median) 22
3-2-4 非前景像素更新法(Selective update using non-foreground pixels) 22
3-2-5 卡爾曼波器(Kalman filter) 22
3-2-6 高斯混合(Mixture of Gaussians) (MoG) 22
3-2-7 背景相減法(Background substraction) 23
3-3 形態學處理 24
3-3-1 侵蝕(Erosion) 24
3-3-2 膨脹(Dilation) 26
3-3-3 斷開(Opening) 28
3-3-4 閉合(Closing) 29
3-4 影像分割 30
3-4-1 區域分裂與合併(Region Splitting and Merging) 31
3-4-2 行程標記法 32
3-4-3 種子區域生長法(Seeded Region Growing) 34
3-4-4 改良種子區域生長法 37
3-5 目標物建模 42
第四章 演算法追蹤目標物 44
4-1 集群分析演算法基本概念 45
4-2 相似度的計算與測量 46
4-2-1 單一連鎖法(single linkage) 48
4-2-2 完全連鎖法(complete linkage) 49
4-2-3 中心法(centroid method) 50
4-2-4 華德法(Ward’s methods) 50
4-3 層次集群方法與非層次集群方法 51
4-3-1 層次集群方法(hierarchical methods) 52
4-3-2 非層次集群方法(non-hierarchical methods) 56
4-4 利用PID控制鏡頭上與車子上的馬達 58
4-5 探討了遮蔽問題與使用的改善方法 64
4-6 系統流程圖 67
第五章 實驗結果與討論 69
5-1 模擬實驗 69
5-2 模擬影像追蹤 74
5-3 改良型YUV與一般的YUV 75
5-4 實際實驗 77
第六章 結論與建議 88
6-1 結論 88
6-2 建議 88
參考文獻 90
附錄 94
參考文獻

[1] M. Kass, A. Witkin and D. Terzopoulos, “Snake: active contour models”, International Journal of Computer Vision, 321-332, 1988.
[2] S. McKenna, S. Jabri, Z. Duric, H. Wechsler and A. Rosenfeld, “Tracking groups of people,” Comput. Vis. Image Understanding, vol. 80, pp. 42-56, 2000.
[3] C. R. Wren, A. Azarbayejani, T. Darrell, and A. P. Pentland, “Pfinder: Real-time tracking of the human body,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, pp. 780-785, 1997.
[4] S. T. Birchfield and S. Rangarajan, “Spatiograms versus histograms for region-based tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1158-1163, 2005.
[5] N. Peterfreund, “The Velocity Snake,” Proc. IEEE Nonrigid and Articulated Motion Workshop, Virgin Islands, pp. 70-79, 1997.
[6] N. Peterfreund, “Robust tracking of position and velocity with Kalman snakes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 564–569, 2000.
[7] H. Fujiyoshi and A. J. Lipton, “Real-time human motion analysis by image skeletonization,” IEEE Workshop on Application of Computer Vision, pp. 15–21, 1998.
[8] D. S. Jang and H. I. Choi, “Active models for tracking moving objects, ” Pattern Recognition, vol. 33, no. 7, pp. 1135–1146, 2000.
[9] D. Comaniciu , V. Ramesh, P. Meer, “Kernel-based object tracking,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564-577, 2003.
[10] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc.British Machine Vision Conf, pp. 262–352, 2000.
[11] S. X. Ju, M. J. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 38–44. 1996.
[12] S. Murali and R. Girisha, “Segmentation of Motion Objects from Surveillance Video Sequences using Temporal Differencing Combined with Multiple Correlation,” in Proceedings of the IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 472-477, 2009.
[13] J. L. Barron, D. J. Fleet, S. S. Beauchemin and T. A. Burkitt, “Performance of optical flow techniques,” Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 236 - 242, 1992.
[14] M. Mueller, P. Karasev, I. Kolesov and A. Tannenbaum, “Optical Flow Estimation for Flame Detection in Videos,” IEEE Transactions on Image Processing, vol. 22, no. 7, pp. 2786-2797, 2013.
[15] D. Comaniciu , V. Ramesh, P. Meer, “Kernel-based object tracking,” IEEE Transaction on Pattern Analysis and Machine Intelligence, vol.25, no. 5, pp. 564-577, 2003.
[16] P. KaewtraKulPong and R. Bowden, “An Adaptive Visual System for Tracking Low Resolution Color Targets,” in Proceedings of British Machine Vision Conference, pp. 243-252, 2001.
[17] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A hierarchical model of dynamics for tracking people with a single video camera,” in Proc.British Machine Vision Conf, pp. 262–352, 2000.
[18] S. X. Ju, M. J. Black, and Y. Yaccob, “Cardboard people: a parameterized model of articulated image motion,” in Proc. IEEE Int. Conf. Automatic Face and Gesture Recognition, pp. 38–44. 1996.
[19] S. Y. Chen, S. Y. Ma, L. G. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 12, no. 7, pp. 577-586, 2002.
[20] Y. C. Chung, J. M. Wang, and S. W. Chen, “Progressive Background Image Generation,” in Proc. of 15th IPPR Conf. on Computer Vision, Graphics and Image Processing, pp. 858-865, 2002.
[21] L. Maddalena and A. Petrosino, “A Self-Organizing Approach to Background Substraction for Visual Surveillance Applications,” IEEE Transactions on Image Processing, vol.17, no. 7, pp. 1168-1177, 2008.
[22] L. Bischof and R. Adams, “Seeded Region Growing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 16, no. 6, pp. 641-647, 1994.
[23] M. M. S. J. Preetha, L. P. Suresh and M. J. Bosco, “Image segmentation using seeded region growing,” International Conference on Computing, Electronics and Electrical Technologies (ICCEET), pp. 576-583, 2012.
[24] C. Huang, Q. Liu and X. Li, “Image segmentation using seeded region growing,” Seventh International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp.533-536, 2010.
[25] Amir Alush and Jacob Goldberger, “Hierarchical Image Segmentation Using Correlation Clustering,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 6, June 2016.
[26] Jia-Hao Syu, Sheng-Jyh Wang, Member, IEEE, and Li-Chun Wang, Fellow, IEEE, “Hierarchical Image Segmentation Based on Iterative Contraction and Merging,” IEEE Transactions on Image Processing, vol. 26, no. 5, June 2017.
[27] Ting Liu, Mojtaba Seyedhosseini, and Tolga Tasdizen, Senior Member, IEEE “Image Segmentation Using Hierarchical Merge Tree,” IEEE Transactions on Image Processing, vol. 25, no. 10, October 2016.
[28] CMUcam5 Pixy,http://www.cmucam.org/projects/cmucam5/wiki
[29] 張榮貴,「基於HPSO-TVAC演算法於多目標追蹤系統之研究」,國立中央大學電機系,碩士論文,民國103年。
[30] 顏妙純,「一個即時移動物偵測與追蹤的嵌入式系統」,國立中央大學資訊工程研究所,碩士論文,民國98年。
[31] 顏大鈞,「植基於紋路特徵編碼之紋路分析及彩色影像分割研究」,屏東商業技術學院資訊管理所,碩士論文,民國93年。
指導教授 鍾鴻源 審核日期 2017-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明