博碩士論文 104521100 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:54.227.157.163
姓名 趙若妤(Jo-Yu Chao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於儲能系統之智慧型太陽光電功率平滑化控制
(Intelligent PV Power Smoothing Control with Energy Storage System)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 利用智慧型控制之三相主動式電力濾波器的研製★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製
★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台
★ 智慧型同動控制之龍門式定位平台及應用★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統
★ 智慧型控制雙饋式感應風力發電系統之研製★ 無感測器直流變頻壓縮機驅動系統之研製
★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統★ 多重地網系統之人身安全驗證與模擬
★ 利用智慧型控制與主動式直軸訊號注入法之孤島偵測研究★ 具主動功因調節之LED驅動器研製
★ 應用於輕型電動車之智慧型錯誤容忍控制六相永磁同步馬達驅動系統★ 智慧型控制數位化鋰錳電池充電器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於太陽光電系統易受照度及溫度等環境因素影響而造成瞬間能量變化大,若大量併入市電系統,將影響電網的可靠度與穩定度。因此,本論文提出以非對稱歸屬函數之機率模糊類神經網路為架構之智慧型控制應用於磷酸鋰鐵電池儲能系統,目的為減緩太陽光電輸出至電網的功率波動。於此控制策略中,太陽光電實際輸出功率與平滑後輸出功率之間的差值將由電池儲能系統提供。論文中將詳細介紹非對稱歸屬函數之機率模糊類神經網路之架構與線上學習法則,並證明其收斂性。除此之外,在電池能量管理方面利用庫倫積分法實現電池電量狀態的估測,以避免電池過度充放電。根據再生能源導入電網實功率波動之規範,本研究所提之非對稱歸屬函數之機率模糊類神經網路明顯減緩太陽光電輸出功率波動,以提高電網之可靠度與穩定度。此外,與其他平滑控制方法相比,本論文透過非對稱歸屬函數之機率模糊類神經網路之控制實現既符合規範並且使所需電池容量最小化之目的。最後,利用模擬與實驗結果驗證所提功率平滑控制應用於電池儲能系統在不同照度變化情況下之成效。
摘要(英) As a major problem for integrating photovoltaic (PV) power plant to the grid, power fluctuations lead to poor power quality. A possible solution for regulating the intermittent output power of a PV power plant is to integrate a battery energy storage system (BESS). Therefore, an intelligent PV power smoothing control using probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF) is proposed to mitigate the fluctuation of PV output power directly fed to the grid. Moreover, the network structure of the PFNN-AMF and its online learning algorithms are described in detail. In addition, the state of charge (SOC) estimation using Coulomb counting method is adopted in the energy management of battery. According to the grid active power fluctuation limits set in this study, the proposed method is capable of mitigating the fluctuation of PV output power to improve reliability and stability of the grid. Furthermore, comparing to the other smoothing methods, a minimum energy capacity of the BESS with a small fluctuation of the grid power can be achieved by the PV power smoothing control using PFNN-AMF. Finally, the experimental results of various PV variation sceneries are realized to validate the effectiveness of the proposed intelligent PV power smoothing control.
關鍵字(中) ★ 太陽能發電廠
★ 電池儲能系統
★ 磷酸鋰鐵電池
★ 功率平滑化控制
★ 非對稱歸屬函數之機率模糊類神經網路
★ 電池電量狀態
關鍵字(英) ★ Photovoltaic (PV)
★ battery energy storage system (BESS)
★ LiFePO4 battery
★ power smoothing control
★ probabilistic fuzzy neural network with asymmetric membership function (PFNN-AMF)
★ state of charge (SOC)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 本文貢獻 6
1.4 論文大綱 6
第二章 磷酸鋰鐵電池儲能系統 8
2.1 簡介 8
2.2 鋰離子電池 8
2.2.1 鋰離子之電化學原理 8
2.2.2 磷酸鋰鐵電池之特性 11
2.3 電池電量狀態估測 11
2.3.1 開路電壓法 11
2.3.2 比重法 12
2.3.3 內阻法 12
2.3.4 庫倫積分法 13
2.4 雙級與單級儲能系統 13
2.5 太陽能發電廠 15
2.6 三相座標軸轉換 17
2.6.1 靜止坐標軸 19
2.6.2 同步旋轉座標軸 20
2.6.3 三相功率計算 21
2.7 市電角度估測法 22
2.7.1 線電壓軸轉換法 23
2.7.2 電壓濾波法 24
2.7.3 鎖相迴路法 24
2.8 變流器之實虛功控制與電流控制 25
2.9 硬體設備 27
2.9.1 磷酸鋰鐵電池 28
2.9.2 變流器 29
2.9.3 資料擷取卡 31
2.9.4 太陽能發電廠模擬器 32
第三章 功率平滑化控制技術探討 33
3.1 簡介 33
3.2 功率波動 33
3.3 平均輸出法 34
3.4 移動平均法 34
3.5 一階低通濾波器 35
3.6 機率模糊類神經網路 36
3.6.1 機率模糊類神經網路架構 36
3.6.2 機率模糊類神經網路線上學習法則 39
第四章 非對稱歸屬函數之機率模糊類神經網路 42
4.1 簡介 42
4.2 非對稱歸屬函數之機率模糊類神經網路架構 42
4.3 非對稱歸屬函數之機率模糊類神經網路線上學習法則 46
4.4 非對稱歸屬函數之機率模糊類神經網路收斂性分析 48
第五章 單級智慧型磷酸鋰鐵電池儲能系統 51
5.1 系統簡介 51
5.2 功率平滑化控制策略 52
5.3 功率平滑化方法之比較 53
5.4 不同太陽光照度變化條件下功率平滑化之模擬 59
5.4.1 照度變化(700 W/m2-900 W/m2-1000 W/m2-900 W/m2) 63
5.4.2 照度變化(900 W/m2-1000 W/m2-900 W/m2-800 W/m2) 65
5.4.3 照度變化(700 W/m2-800 W/m2-700 W/m2-900 W/m2-1000 W/m2) 67
5.5 實作結果與討論 69
5.5.1 單級磷酸鋰鐵電池儲能系統測試 69
5.5.2 照度變化(700 W/m2-900 W/m2-1000 W/m2-900 W/m2) 72
5.5.3 照度變化(900 W/m2-1000 W/m2-900 W/m2-800 W/m2) 75
5.5.4 照度變化(700 W/m2-800 W/m2-700 W/m2-900 W/m2-1000 W/m2) 78
第六章 結論與未來研究方向 82
6.1 結論 82
6.2 未來研究方向 83
參考文獻 84
作者簡歷 90
參考文獻
[1] EPIA, “Global market outlook for solar power 2015-2019”, Jan. 2016.
[2] 經濟部能源局,2012年能源產業技術白皮書,經濟部能源局,台北市,2012。
[3] 經濟部能源局,綠色能源產業躍升計畫,2009。
[4] 經濟部能源局,「陽光屋頂百萬座」計畫,2011。
[5] 台灣電力公司,http://www.taipower.com.tw。
[6] F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, “Overview of control and grid synchronization for distributed power generation systems,” IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398-1409, Oct. 2006.
[7] A. Jamehbozorg, S. N. Keshmiri, and G. Radman, “PV output power smoothing using energy capacitor system,” in Proc. IEEE Conf. Southeastcon, Nashville, TN, USA, pp. 24-29, 2011.
[8] G. Wang, G. Konstantinou, C. D. Townsend, J. Pou, S. Vazquez, G. D. Demetriades, and V. G. Agelidis, “A review of power electronics for grid connection of utility-scale battery energy storage systems,” IEEE Trans. Sustain. Energy, vol. 7, no. 4, pp. 1778-1790, 2016.
[9] M. Lave, J. Kleissl, A. Ellis, and F.Mejia, “Simulated PV power plant variability: Impact of utility-imposed ramp limitations in Puerto Rico,” in Proc. IEEE Conf. Photovoltaic Specialists Conference, pp. 1817-1821, 2013.
[10] M. Jannati, S. H. Hosseinian, B. Vahidi and G. J. Li, “Mitigation of windfarm power fluctuation by adaptive linear neuron-based power tracking method with flexible learning rate,” IET Renew. Power Gener., vol. 8, no. 6, pp. 659-669, 2014.
[11] A. Esmaili, and A. Nasiri, “Power smoothing and power ramp control for wind energy using energy storage,” in Proc. IEEE Conf. Energy Conversion Congress and Exposition, pp. 922-927, 2011.
[12] M. E. Amiryar, and K. R. Pullen, “A review of flywheel energy storage system technologies and their applications,” Appl. Sci., vol. 7, 2017.
[13] T. Asao, T. Murata, J. Tamura, M. Kubo, A. Kuwayama, and T. Matsumoto, “Smoothing control of wind power generator output by superconducting magnetic energy storage system,” in Proc. IEEE Conf. Electrical Machines and Systems, pp. 302-307, 2007.
[14] H. X. Jia, Y. Zhang, and Y. F. Wang, “Application of energy storage technology in wind power systems,” Renew. Energy, no.27, pp. 10-15, 2009.
[15] G. Wang, M. Ciobotaru, and V. G. Agelidis, “Power smoothing of large solar PV plant using hybrid energy storage,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 834-842, 2014.
[16] J. Johnson, A. Ellis, A. Denda, K. Morino, T. Shinji, T. Ogata, and M. Tadokoro, “PV output smoothing using a battery and natural gas engine-generator,” in Proc. IEEE Conf. Photovoltaic Specialists Conference, pp. 1811-1816, 2013.
[17] X. Li, D. Hui, and X. Lai, “Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations,” IEEE Trans. Sustain. Energy, vol. 4, no. 2, pp. 464-473, 2013.
[18] A. Saez-de-Ibarra, E. Martinez-Laserna, D. Stroe, M. Swierczynski, and P. Rodriguez, “Sizing study of second life Li-ion batteries for enhancing renewable energy grid integration,” IEEE Trans Ind. Appl., vol. 52, no. 6, pp. 4999-5008, 2016.
[19] W. Y. Chang, “The state of charge estimating methods for battery: A Review,” Appl. Math., vol. 2013, no. 1, pp. 1-7, 2013.
[20] C. Zhang, L. Y. Wang, X. Li, W. Chen, G. G. Yin, and J. Jiang, “Robust and adaptive estimation of state of charge for Lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4948-4957, 2015.
[21] M. Coleman, C. K. Lee, C. Zhu, and W. G. Hurley, “State-of-charge determination from EMF voltage estimation: using impedance, terminal voltage, and current for Lead-acid and Lithium-ion batteries,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2550-2557, 2007.
[22] G. Dong, J. Wei, C. Zhang, and Z. Chen, “Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method,” Appl. Energy, vol. 162, pp. 163-171, 2016.
[23] Z. Liu, D. W. Gao, Y. H. Wan, and E. Muljadi, “Wind power plant prediction by using neural networks,” 2012 IEEE Energy Conversion Congress and Exposition (ECCE), pp.3154-3160, 2012.
[24] F. J. Lin, K. H. Tan, and C. H. Tsai, “Improved differential evolution-based Elman neural network controller for squirrel-cage induction generator system,” IET Renew. Power Gener., vol. 10, no. 7, pp. 988-1001, 2016.
[25] M. E. G. Urias, E. N. Sanchez, and L. J. Ricalde, “Improved differential evolution-based Elman neural network controller for squirrel-cage induction generator system,” IEEE System Journal, vol. 9, no. 3, pp. 945-953, 2014.
[26] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Sys., vol. 12, no. 3, pp. 411-420, 2004.
[27] F. J. Lin, L. T. Teng, P. H. Shieh, and Y. F. Li, “Intelligent controlled-wind-turbine emulator and induction-generator system using RBFN,” IET Electr. Power Appl., vol. 153, no. 4, pp. 608-618, Jul. 2006.
[28] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai, and C. H. Kuan, “DSP-based probabilistic fuzzy neural network control for Li-ion battery charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, Aug. 2012.
[29] W. M. Lin and C. M. Hong, “A new Elman neural network-based control algorithm for adjustable-pitch variable-speed wind-energy conversion systems,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 473-481, Feb. 2011.
[30] D. F. Specht, “Probabilistic neural network,” Neural Networks, vol. 3, no. 1, pp. 109-118, 1990.
[31] H. X. Li and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Sys., vol. 16, no. 4, pp. 898-908, Aug. 2008.
[32] N. Sozhamadevi, R. S. L. Delcause, and Dr. S. Sathiyamoorthy, “Design and implementation of probabilistic fuzzy logic control system,” in Proc. IEEE Conf. Emerging Trends in Science, Engineering and Technology, pp. 523-531, 2012.
[33] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1528-1536, 2004.
[34] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Conf. Fuzzy System, pp. 1496-1502, 2008.
[35] 杜冠賢,陳耀銘,吳財福,姜士凱,鋰離子電池充電器研製,第六屆台灣電力電子研討會,2007。
[36] 蔡瀚章,智慧型控制數位化鋰錳電池充電器之研製,碩士論文,國立中央大學電機工程學系,桃園,2011。
[37] 華志強、江錫津、薛宗偉,鋰鐵電池與鉛酸電池充放電特性,第八屆臺灣電力電子研討會暨展覽會,2009年9月,第711-715頁。
[38] G. P. Hancke, “A fiber-optic density sensor for monitoring the state-of-charge of a Lead-acid battery,” IEEE Trans. Instrum. Meas., vol. 39, no. 1, pp. 247-250, Feb. 1990.
[39] D. K. Khatod, V. Pant, and J. Sharma, “Analytical approach for wellbeing assessment of small autonomous power systems with solar and wind energy sources,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 535-545, 2010.
[40] I. Parra, M. Muñoz, E. Lorenzo, M. García, J. Marcos, and F. Martínez-Moreno, “PV performance modelling: A review in the light of quality assurance for large PV plants,” Renewable and Sustainable Energy Reviews, vol. 78, pp. 780-797, 2017.
[41] IEC 61724, Photovoltaic system performance monitoring Guidelines for measurement, data exchange and analysis, 1998.
[42] 黃仲欽,交流電動機控制,交流電動機課程講義,民國97年。
[43] R. Yan and T. K. Saha, “Investigation of voltage stability for residential customers due to high photovoltaic penetration,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 651-661, May 2012.
[44] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics, 1989.
[45] XPS2E-025020CB Datasheet, LiFeTech Energy Co.
[46] 呂宗翰,智慧型控制雙饋式感應風力發電系統之研製,國立中央大學,碩士論文,2010年六月。
[47] M.R.I. Sheikh, S.M. Muyeen, R. Takahashi, T. Murata and J. Tamura, “Minimization of fluctuations of output power and terminal voltage of wind generator by using STATCOM/SMES,” in Proc. IEEE Conf. PowerTech, Bucharest, pp. 1-6, 2008.
[48] Q. Jiang, Y. Gong and H. Wang, “A battery energy storage system Dual-layer control strategy for mitigating wind farm fluctuations,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3263-3273, 2013.
[49] F. J. Lin, H. C. Chiang, J. K. Chang, and Y. R. Chang, “Intelligent wind power smoothing control with BESS,” IET Renew. Power Gener., vol. 11, no. 2, pp. 398-407, Oct. 2016
[50] The University of Queensland. UQ SOLAR Photovoltaic Live Data [Online]. Available: http://solar.uq.edu.au/user/reportPower.php.
[51] M. Jannati, S. H. Hosseinian, B. Vahidi, and G. J. Li, “Mitigation of windfarm power fluctuation by adaptive linear neuron-based power tracking method with flexible learning rate,” IET Renew. Power Gener., vol. 8, no. 6, pp. 659-669, 2014.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2017-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明