博碩士論文 104521105 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:3.144.123.8
姓名 宋韋旻(Wei Min Sung)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於C/X頻段與802.11ac規格暨整合電流模態邏輯除頻器之低功耗寬頻IQ發射機
(Low-power Wideband IQ Transmitter with Integrated Current Mode Logic Divider for C/X Band and 802.11ac Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文研究內容是在IEEE 802.11ac所訂定之規格下,實現一寬頻低功耗發射機之整合型電路,其中包含兩顆晶片,第一顆晶片為單路同相(In-phase)之發射機,利用tsmcTM 90 nm CMOS製程來實現。基頻部分使用CMOS基頻反向式放大器以及電阻回授來使得輸出阻抗提升以及將偏壓簡單化;升頻混波器採用電流模態被動混頻器來達到低功耗以及高線性度的特性;功率放大器之驅動級使用疊接架構達到較高之轉換增益使得輸出功率能提高,以及使用電阻電容串聯回授改善穩定度,輸出端藉由設計一電感性耦合共振腔巴倫以達到寬頻功率匹配。量測時固定本地震盪功率為6 dBm進行量測,在中心頻率為8 GHz時轉換增益為14.38 dB,輸出功率1-dB壓縮點為 -0.75 dBm,輸出三階交互調變點為10.85 dBm,增益頻寬為5 - 10.5 GHz,本地震盪埠至射頻輸出埠之隔離度為21.99 dB,整體直流功耗64.81mW,晶片面積大小為1.21 × 0.818 mm2。
第二顆晶片為整合同相以及正交相(Quadrature-phase)二分之一周期之IQ寬頻發射機電路,利用tsmcTM 90 nm CMOS製程來實現,本地震盪端加入一電流模態邏輯之除頻器電路以產生四相位訊號,I路以及Q路訊號直接結合以達到電路簡單化。量測時固定本地震盪功率為14 dBm,晶片的直流打線到印刷電路板進行量測,在中心頻率為8 GHz時轉換增益為12.9 dB,輸出功率1-dB壓縮點為 -4.17 dBm,輸出之三階失真點為16.47 dBm,本地震盪埠之載波抑制為30.02 dBc,頻帶內之邊帶抑制為39.62 dBc,增益頻寬為5 - 10.5 GHz,整體直流功耗為66.36mW,晶片面積大小為1.245 × 1.099 mm2。
摘要(英) This thesis developed a fully integrated wideband and low power I/Q transmitter under the specifications of IEEE 802.11ac. There are two chips in the thesis. The first chip in chapter 2 is fabricated in tsmcTM 90 nm CMOS technology. The author applied a CMOS baseband inverter-type amplifier with resistive-feedback which increases the output impedance in the baseband circuit. The up-conversion mixer is adopted current-mode passive mixer for low power and high linearity application. The driver amplifier is used cascode topology which enhances the conversion gain to increase output power performance. For the stability condition, the resistor-capacitor (RC) feedback is applied in the driver amplifier. In the output of the amplifier, an inductively coupled resonator transformer-type balun is adopted for the wideband power matching. The proposed I-channel transmitter exhibits a measured conversion gain of 14.376 dB, an output 1-dB compression point of -0.75 dBm and an OIP3 of 10.854 dBm under the LO power of 6 dBm at the center frequency of 8 GHz. The measured gain bandwidth is 5 - 10.5 GHz and the LO-port to RF-port isolation is 21.99 dB. The chip consumes the dc power of 64.81 mW and occupies 1.21 × 0.818 mm2.
The second chip is a wideband transmitter circuit which integrates in-phase and quadrature-phase 50% duty-cycle signal and fabricated in tsmcTM 90 nm CMOS technology.
A current-mode logic divider in the LO-port is presented, which is used to generate I/Q signal. For simplicity, the up-conversion I/Q signal is direct-combining to solve the problem of the sideband interference. For the measurement conditions, the chip bias is bounded to print circuit board. The proposed I/Q transmitter exhibits the measured conversion gain of 12.9 dB, an output 1-dB compression point of -4.17 dBm, an OIP3 of 16.47 dBm, a carrier suppression of 30.02 dBc and a sideband suppression of 39.62 dBc under the LO power of 14 dBm at the center frequency of 8 GHz. The measured gain bandwidth is 5 - 10.5 GHz and the chip consumes a dc power of 66.362 mW and occupies an area of 1.245 × 1.099 mm2.
關鍵字(中) ★ IQ發射機
★ 電流模態被動混頻器
★ 電流模態邏輯除頻器
★ 電感性耦合共振腔變壓器型式巴倫
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
圖目錄 VIII
表目錄 XII
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節敘述 2
第二章 90 nm CMOS製程設計之應用於C/X頻帶寬頻發射機 3
2-1 前言 3
2-2 電路架構及原理 11
2-2-1 基頻反向式放大器設計 12
2-2-2 電流模態被動混頻器設計 15
2-2-3 功率驅動放大器設計 21
2-2-4 電感性耦合共振腔之差動轉單端變壓器形式巴倫設計 26
2-3 模擬與量測結果 33
2-4 結果與討論 40
第三章 應用於C/X頻帶之寬頻IQ發射機 42
3-1 前言 42
3-2 電路架構及原理 45
3-2-1 IQ產生器-除頻器電路設計 47
3-2-2 被動電流模態混頻器之二分之一與四分之一週期分析比較 51
3-2-3 功率驅動放大器之匹配網路調整 56
3-3 模擬與量測結果 59
3-4 結果與討論 73
第四章 結論 76
4-1 結論 76
4-2 未來期許及研究方向 77
References 78

參考文獻 [1] S. Seth et al., "A dynamically biased multiband 2G/3G/4G cellular transmitter in 28 nm CMOS," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1096-1108, May 2016.
[2] M. Collados, H. Zhang, B. Tenbroek and H. H. Chang, "A low-current digitally predistorted direct-conversion transmitter with 25% duty-cycle passive mixer," IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 726-731, April 2014.
[3] D. Jeong, S. Lee, H. Lee and B. Kim, "Ultra-low power direct-conversion 16 QAM transmitter based on Doherty power amplifier," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 7, pp. 528-530, July 2016.
[4] Y. Kishiyama, "Future radio access for 5G", invited talk in The International Workshop on Cloud Cooperated Heterogeneous Networks, Osaka, Japan, 23 Oct., 2013.
[5] X. Ding and L. Zhang, "A high-efficiency GaAs MMIC power amplifier for multi-standard system," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 55-57, Jan. 2016.
[6] R. Giofré, P. Colantonio and F. Giannini, "A design approach for two stages GaN MMIC PAs with high efficiency and excellent linearity," IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 46-48, Jan. 2016.
[7] H. K. Chiou, K. C. Lin, W. H. Chen and Y. Z. Juang, "A 1-V 5-GHz self-bias folded-switch mixer in 90-nm CMOS for WLAN receiver," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 59, no. 6, pp. 1215-1227, June 2012.
[8] A. Mirzaei, D. Murphy and H. Darabi, "Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, no. 10, pp. 2318-2331, Oct. 2011.

[9] H. Darabi and A. A. Abidi, "Noise in RF-CMOS mixers: a simple physical model," IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15-25, Jan. 2000.
[10] P. R. Gray, P. I. Hunt, S. H. Lewis, and R. G. Meyer, Analysis and Design of Analog Integrated Circuits. John Wiley & Sons Inc, fifth ed., 2009.
[11] H. Darabi and J. Chiu, "A noise cancellation technique in active RF-CMOS mixers," IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628-2632, Dec. 2005.
[12] A. Mirzaei, D. Murphy and H. Darabi, "Analysis of direct-conversion IQ transmitters with 25% duty-cycle passive mixers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 58, no. 10, pp. 2318-2331, Oct. 2011.
[13] Z. Lin, P. I. Mak and R. P. Martins, "A 0.14-mm2 1.4-mW 59.4-dB-SFDR 2.4-GHz ZigBeeWPAN receiver exploiting a “split-LNTA + 50% LO” topology in 65-nm CMOS" IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1525-1534, July 2014.
[14] C. Andrews and A. C. Molnar, "Implications of passive mixer transparency for impedance matching and noise figure in passive mixer-first receivers," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 57, no. 12, pp. 3092-3103, Dec. 2010.
[15] A. Niknejad and H. Hashemi, mm-Wave Silicon Technology 60GHz and Beyond (2007) 129.
[16] T. Yao et al., “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1044–1057, May 2007.
[17] 邱煥凱, 林貴城, “ADS 應用於射頻功率放大器設計與模擬“, 國立清華大學出版社, 2014
[18] RF Circuit Design - by Richard Chi-Hsi Li_2009, Ch.7.2.1, p.283
[19] C. W. Kuo, H. K. Chiou and H. Y. Chung, "An 18 to 33 GHz fully-integrated Darlington Power Amplifier With Guanella-type transmission-line transformers in 0.18 m CMOS technology," IEEE Microw. Wireless Compon. Lett., vol. 23, no. 12, pp. 668-670, Dec. 2013.
[20] J. H. Tsai and J. W. Wang, "An X-band half-watt CMOS power amplifier using interweaved parallel combining transformer" IEEE Microw. Wireless Compon. Lett., vol. 27, no. 5, pp. 491-493, May 2017.
[21] C. H. Li, C. N. Kuo and M. C. Kuo, "A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-μm CMOS" IEEE Trans. Microw. Theory Techn., vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[22] Zisan Zhang et al., "A 6–9GHz WiMedia UWB RF transmitter in 90nm CMOS," in Radio Freq. Integr. Circuits Symp., 2008, pp. 39-42.
[23] H. Zheng, S. Lou, D. Lu, C. Shen, T. Chan, and H. Luong, “A 3.1 GHz–8.0 GHz single-chip transceiver for MB-OFDM UWB in 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 414–426, Feb. 2009.
[24] A. Tanaka, H. Okada, H. Kodama and H. Ishikawa, “A 1.1V3.1-to-9.5 GHz MB-OFDM UWB transceiver in 90 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2006, pp. 398–407.
[25] Y.-J. Ko, S. Stapleton, and R. Sobot, “ Ku-band image rejection sliding- IF transmitter in 0.13-μm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 2091–2107, Aug. 2011.
[26] M. Camponeschi et al., “A X-band I/Q upconverter in 65 nm CMOS for high resolution FMCW radars,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 141–143, Mar. 2012.
[27] S. Seth et al., "A dynamically biased multiband 2G/3G/4G cellular transmitter in 28 nm CMOS," IEEE J. Solid-State Circuits, vol. 51, no. 5, pp. 1096-1108, May 2016.
[28] J. Kaukovuori, K. Stadius, J. Ryynanen and K. A. I. Halonen, "Analysis and design of passive polyphase filters," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 55, no. 10, pp. 3023-3037, Nov. 2008.
[29] A. Mirzaei, H. Darabi, J. C. Leete, X. Chen, K. Juan and A. Yazdi, "Analysis and optimization of current-driven passive mixers in narrowband direct-conversion receivers," IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2678-2688, Oct. 2009.
[30] X. He and J. van Sinderen, "A low-power, low-EVM, SAW-less WCDMA transmitter using direct quadrature voltage modulation," IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3448-3458, Dec. 2009.
[31] D. Yang, C. Andrews and A. Molnar, "Optimized design of N-phase passive mixer-first receivers in wideband operation," IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 62, no. 11, pp. 2759-2770, Nov. 2015.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2018-1-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明