博碩士論文 104521603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:54.234.0.2
姓名 愛司馬(Fivitria Istiqomah)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 結合追瞳裝置與腦電波於科學學習研究
(Apply The Combination of Eye-Tracker and EEG for Scientific Learning Studies)
相關論文
★ 使用梳狀濾波器於相位編碼之穩態視覺誘發電位腦波人機介面★ 應用電激發光元件於穩態視覺誘發電位之腦波人機介面判斷
★ 智慧型手機之即時生理顯示裝置研製★ 多頻相位編碼之閃光視覺誘發電位驅動大腦人機介面
★ 以經驗模態分解法分析穩態視覺誘發電位之大腦人機界面★ 利用經驗模態分解法萃取聽覺誘發腦磁波訊號
★ 明暗閃爍視覺誘發電位於遙控器之應用★ 使用整體經驗模態分解法進行穩態視覺誘發電位腦波遙控車即時控制
★ 使用模糊理論於穩態視覺誘發之腦波人機介面判斷★ 利用正向模型設計空間濾波器應用於視覺誘發電位之大腦人機介面之雜訊消除
★ 智慧型心電圖遠端監控系統★ 使用隱馬可夫模型於穩態視覺誘發之腦波人機介面判斷 與其腦波控制遙控車應用
★ 使用類神經網路於肢體肌電訊號進行人體關節角度預測★ 使用等階集合法與影像不均勻度修正於手指靜脈血管影像切割
★ 應用小波編碼於多通道生理訊號傳輸★ 結合高斯混合模型與最大期望值方法於相位編碼視覺腦波人機介面之目標偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2019-7-31以後開放)
摘要(中) 在教育的領域中,了解學生在不同學習步驟與學習狀態,是否達到真正的學習成效,是一件非常重要的事情。為了達成這個效果,研究人員常常發展各種量測工具來對學生的學習認知負荷進行估測,然而目前的學習狀態估測方法大多採用問卷來進行,因此缺乏客觀的標準。在本研究中,我們設計一種結合追瞳裝置(eye-tracking system)與腦波儀(Electroencephalography,EEG)的評估系統作為認知負荷的量測工具。我們利用追瞳裝置所偵測在螢幕上的注視物件,作為觸發腦波量測的事件,藉由結合注視點的時間判斷與腦波訊號,估測受試者的認知負荷學習狀態。此方法為一種新穎的客觀認知負荷量測工具,相較於傳統的腦電波量測,僅依靠腦電波無法知道學員眼睛的注視點,也無法獲得學員對於畫面中刺激材料的影響。本方法提供了一種穩定可靠且可以應用於課堂情境的客觀研究方法。經由腦波研究並與學員的反饋問卷進行比較,我們發現學員的認知負荷與theta band能量有正相關。我們的研究結果顯示腦電波與追瞳器的結合能夠有效的提取學員注視位置所閱讀內容的腦波,本研究提供了一種新的客觀研究方法於課堂情境研究認知負荷。
摘要(英) In education fields, observing different learning pace and evaluating learning state of students are considered as challenging issues. It is necessary to develop measurement tools for better understanding the cognitive processes underlying activities. In this study, an objective measurement tool for cognitive load assessment in scientific learning studies by means of the combination of eye-tracking data metrics and EEG was designed. Eye fixation were treated as natural markers to extract corresponding EEG signal segments. Compared to other studies using EEG only, the proposed system provides effective information of subject’s eye fixation positions which enables researchers to know the cognitive states of EEG data are induced by what stimulation events in the reading stuffs.
In this study it was indicated that theta band power was increased with subject’s mental effort based on the subjective rating scale questionnaire. The correlation was positively correlated and to be statistically significant, r (13) = +.81, p < .001. It was found that there was a significant positive relationship between duration time and theta band power, r (42) = +.56, p < .001. Subjects who spent longer duration time were tend to have higher theta band power. It was also found that subject’s theta band power increased from when they were reading at the description part to the question part. The correlation was positively correlated and to be statistically significant, r (42) = +.70, p < .001.
Overall, this study results have demonstrated the feasibility of using eye-tracking system to improve EEG analyses for cognitive state detections in classroom environments. Combining EEG and eye-tracking could be a potentially objective way to study student’s cognitive activities.
關鍵字(中) ★ 追瞳器
★ 腦電波
★ 認知負荷
關鍵字(英) ★ Eye-tracker
★ Electroencephalography
★ Cognitive load
論文目次
中文摘要 i
ABSTRACT ii
ACKNOWLEDGEMENT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1 INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Aim of the study 3
CHAPTER 2 LITERATURE REVIEW 5
2.1 Cognitive Load Theory 5
2.1.1 Types of Cognitive Load 5
2.1.1.1 Intrinsic Load 5
2.1.1.2 Extraneous Load 6
2.1.1.3 Germane Load 6
2.1.2 Cognitive Load and Multimedia 6
2.1.3 Measuring Cognitive Load 7
2.1.3.1 Subjective techniques 7
2.1.3.2 Objective techniques 8
2.2 Electroencephalography (EEG) 9
2.2.1 Frequency Bands of the Human EEG 10
2.2.2 EEG as an Index of Workload 11
2.3 Eye-tracking 12
2.3.1 Eye-Tracking Techniques 12
2.3.2 Features of Eye Movements 13
2.3.2.1 Fixation 13
2.3.2.2 Saccade 14
v
2.3.2.3 Scan Path 14
2.3.2.4 Eye-Blinks 14
2.3.2.5 Areas of Interest 14
CHAPTER 3 METHODOLOGY 16
3.1 Participants 16
3.2 Stimuli Materials and AOI Selection 16
3.3 EEG Recorder 17
3.4 Eye-Tracker 17
3.4.1 Calibration 17
3.4.2 Eye-Tracking Data Metrics 19
3.5 Procedure 20
3.6 Data Analysis 22
CHAPTER 4 RESULTS AND DISCUSSION 24
4.1 Results 24
4.1.1 Theta Band Power Correlated with Subjective Rating Scale on Subject’s
Mental Effort 24
4.1.2 Duration Time versus Theta Band Power 25
4.1.3 Theta Band Power Increased with Task Difficulty 27
4.2 Discussion 30
CHAPTER 5 CONCLUSION AND FUTURE WORK 31
4.1 Conclusion 31
4.2 Future Work 31
REFERENCES 32
APPENDIX 38
參考文獻 [1] Mostow, J., and Jang, H. (2012, June). Generating diagnostic multiple choice comprehension cloze questions. In Proceedings of the Seventh Workshop on Building Educational Applications Using NLP (pp. 136-146). Association for Computational Linguistics.
[2] Sundberg, M. D. (2002). Assessing student learning. Cell Biology Education, 1(1), 11-15.
[3] Zhang, W., Jing, S., Gui, L., and Zhang, Y. (2008, May). Physiological data acquisition system for education assessment using wireless sensor network. In Information Technology and Applications in Biomedicine, 2008. ITAB 2008. International Conference on (pp. 471-473). IEEE.
[4] Fernando, L., Alonso, N., and Gomez-Gil, J. (2012). Brain computer interfaces, a review. Sensors, 12(2), pp.1211-1264.
[5] Alotaiby, T., El-Samie, F. E. A., Alshebeili, S. A., and Ahmad, I. (2015). A review of channel selection algorithms for EEG signal processing. EURASIP Journal on Advances in Signal Processing, 2015(1), 66.
[6] Berka, C., Levendowski, D. J., Cvetinovic, M. M., Petrovic, M. M., Davis, G., Lumicao, M. N., Zivkovic, V.T., Popovic, M.V. and Olmstead, R. (2004). Real-time analysis of EEG indexes of alertness, cognition, and memory acquired with a wireless EEG headset. International Journal of Human-Computer Interaction, 17(2), 151-170.
[7] Berka, C., Levendowski, D. J., Ramsey, C. K., Davis, G., Lumicao, M. N., Stanney, K., Reeves, L., Regli, S.H., Tremoulet, P.D. and Stibler, K. (2005, May). Evaluation of an EEG workload model in an Aegis simulation environment. In Defense and security (pp. 90-99). International Society for Optics and Photonics.
[8] Berka, C., Levendowski, D. J., Davis, G., Lumicao, M. N., Ramsey, C. K., Stanney, K., Reeves, L., Tremoulet, P.D. and Regli, S. H. (2005). EEG indices distinguish spatial and verbal working memory processing: Implications for real-time monitoring in a closed-loop tactical Tomahawk weapons simulation. ADVANCED BRAIN MONITORING INC CARLSBAD CA.
[9] Berka, C., Levendowski, D., Davis, G., Yau, A., Whitmoyer, M., Fatch, R., Zivkovic, V. and Olmstead, R. (2006). Nicotine administration and withdrawal effects on EEG metrics of attention, memory and workload: implications for cognitive resource allocation. Augmented Cognition: Past, Present and Future, Foundations of Augmented Cognition, 174-183.
[10] Berka, C., Levendowski, D. J., Davis, G., Whitmoyer, M., Hale, K., and Fuchs, K. (2006). Objective measures of situational awareness using neurophysiology technology. Augmented Cognition: Past, Present and Future, 145-154.
[11] Berka, C., Levendowski, D. J., Lumicao, M. N., Yau, A., Davis, G., Zivkovic, V. T., Olmstead, R.E., Tremoulet, P.D. and Craven, P. L. (2007). EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviation, space, and environmental medicine, 78(5), B231-B244.
[12] Gevins, A., Smith, M. E., McEvoy, L., and Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex, 7(4), 374-385.
[13] Gevins, A., Smith, M. E., Leong, H., McEvoy, L., Whitfield, S., Du, R., and Rush, G. (1998). Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Human Factors: The Journal of the Human Factors and Ergonomics Society, 40(1), 79-91.
[14] Makeig, S. (1993). Auditory event-related dynamics of the EEG spectrum and effects of exposure to tones. Electroencephalography and clinical neurophysiology, 86(4), 283-293.
[15] Makeig, S., and Jung, T. P. (1995). Changes in alertness are a principal component of variance in the EEG spectrum. Neuroreport, 7(1), 213-216.
[16] Makeig, S., and Jung, T. P. (1996). Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Cognitive Brain Research, 4(1), 15-25.
[17] Perrin, A. F. N. M., Xu, H., Kroupi, E., Řeřábek, M., and Ebrahimi, T. (2015, October). Multimodal dataset for assessment of quality of experience in immersive multimedia. In Proceedings of the 23rd ACM international conference on Multimedia (pp. 1007-1010). ACM.
[18] Pleydell-Pearce, C. W., Whitecross, S. E., and Dickson, B. T. (2003, January). Multivariate analysis of EEG: Predicting cognition on the basis of frequency decomposition, inter-electrode correlation, coherence, cross phase and cross power. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii International Conference on (pp. 11-pp). IEEE.
[19] Sterman, M. B., Mann, C. A., and Kaiser, D. A. (1993). Quantitative EEG patterns of differential in-flight workload.
[20] Sterman, M. B., and Mann, C. A. (1995). Concepts and applications of EEG analysis in aviation performance evaluation. Biological psychology, 40(1), 115-130.
[21] Wilson, G. F. (2002). An analysis of mental workload in pilots during flight using multiple psychophysiological measures. The International Journal of Aviation Psychology, 12(1), 3-18.
[22] Wilson, G. F., and Eggemeier, F. T. (1991). Psychophysiological assessment of workload in multi-task environments. Multiple-task performance, 329360.
[23] Mecklinger, A., Johansson, M., Parra, M., and Hanslmayr, S. (2007). Source-retrieval requirements influence late ERP and EEG memory effects. Brain research, 1172, 110-123.
[24] Dong, S., Reder, L. M., Yao, Y., Liu, Y., and Chen, F. (2015). Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty. Brain research, 1616, 146-156.
[25] Benedek, M., Bergner, S., Könen, T., Fink, A., and Neubauer, A. C. (2011). EEG alpha synchronization is related to top-down processing in convergent and divergent thinking. Neuropsychologia, 49(12), 3505-3511.
[26] Guthormsen, A. M., Fisher, K. J., Bassok, M., Osterhout, L., DeWolf, M., and Holyoak, K. J. (2015). Conceptual integration of arithmetic operations with real-world knowledge: Evidence from event-related potentials. Cognitive science.
[27] Hutzler, F., Braun, M., Võ, M. L. H., Engl, V., Hofmann, M., Dambacher, M., Leder, H. and Jacobs, A. M. (2007). Welcome to the real world: Validating
[28] ted brain potentials for ecologically valid settings. Brain Research, 1172, 124-129.
[29] Dimigen, O., Sommer, W., Hohlfeld, A., Jacobs, A. M., and Kliegl, R. (2011). Coregistration of eye movements and EEG in natural reading: analyses and review. Journal of Experimental Psychology: General, 140(4), 552.
[30] Puma, S., Raufaste, E., Paubel, P. V., and El-Yagoubi, R. (2014, July). Fixation locked spectral analysis: using EEG measurement in multitasking environments. In Proceedings of the International Conference on Human-Computer Interaction in Aerospace (p. 11). ACM.
[31] Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive science, 12(2), 257-285.
[32] Kalyuga, S., and Renkl, A. (2010). Expertise reversal effect and its instructional implications: Introduction to the special issue. Instructional Science, 38(3), 209-215.
[33] Paas, F., Renkl, A., and Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational psychologist, 38(1), 1-4.
[34] Sweller, J. (2010). Element interactivity and intrinsic, extraneous, and germane cognitive load. Educational psychology review, 22(2), 123-138.
[35] Mayer, R. E., and Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
[36] Paas, F. G., and Van Merriënboer, J. J. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational psychology review, 6(4), 351-371.
[37] Paas, F., Tuovinen, J. E., Tabbers, H., and Van Gerven, P. W. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational psychologist, 38(1), 63-71.
[38] Ayres, H. (2006). Education and opportunity as influences on career development: findings from a preliminary study in Eastern Australian tourism. Journal of Hospitality, Leisure, Sport and Tourism Education, 5(1), 16-27.
[39] Cierniak, G., Scheiter, K., and Gerjets, P. (2009). Explaining the split-attention effect: Is the reduction of extraneous cognitive load accompanied by an increase in germane cognitive load?. Computers in Human Behavior, 25(2), 315-324.
[40] DeLeeuw, K. E., and Mayer, R. E. (2008). A comparison of three measures of cognitive load: Evidence for separable measures of intrinsic, extraneous, and germane load. Journal of Educational Psychology, 100(1), 223.
[41] Gerjets, P., Scheiter, K., Opfermann, M., Hesse, F. W., and Eysink, T. H. (2009). Learning with hypermedia: The influence of representational formats and different levels of learner control on performance and learning behavior. Computers in Human Behavior, 25(2), 360-370.
[42] Schnotz, W., and Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19(4), 469-508.
[43] Whelan, R. R. (2007). Neuroimaging of cognitive load in instructional multimedia. Educational Research Review, 2(1), 1-12.
[44] Paas, F. G. (1992). Training strategies for attaining transfer of problem-solving skill in statistics: A cognitive-load approach. Journal of educational psychology, 84(4), 429.
[45] Amadieu, F., Van Gog, T., Paas, F., Tricot, A., and Mariné, C. (2009). Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning. Learning and Instruction, 19(5), 376-386.
[46] Minassian, A., Granholm, E., Verney, S., and Perry, W. (2004). Pupillary dilation to simple vs. complex tasks and its relationship to thought disturbance in schizophrenia patients. International Journal of Psychophysiology, 52(1), 53-62.
[47] Andreassi, J. L. (2000). Pupillary response and behavior. Psychophysiology: Human behavior & physiological response, 218-233.
[48] Verney, S. P., Granholm, E., and Dionisio, D. P. (2001). Pupillary responses and processing resources on the visual backward masking task. Psychophysiology, 38(1), 76-83.
[49] Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., and Van de Weijer, J. (2011). Eye tracking: A comprehensive guide to methods and measures. OUP Oxford.
[50] Anderson, E. W., Potter, K. C., Matzen, L. E., Shepherd, J. F., Preston, G. A., and Silva, C. T. (2011, June). A user study of visualization effectiveness using EEG and cognitive load. In Computer Graphics Forum (Vol. 30, No. 3, pp. 791-800). Blackwell Publishing Ltd.
[51] Klimesch, W., Schimke, H. A. N. N. E. S., and Pfurtscheller, G. (1993). Alpha frequency, cognitive load and memory performance. Brain topography, 5(3), 241-251.
[52] Klimesch, W., Schack, B., and Sauseng, P. (2005). The functional significance of theta and upper alpha oscillations. Experimental psychology, 52(2), 99.
[53] Antonenko, P., Paas, F., Grabner, R., and Van Gog, T. (2010). Using electroencephalography to measure cognitive load. Educational Psychology Review, 22(4), 425-438.
[54] Gevins, A., and Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1-2), 113-131.
[55] Smith, M. E., Gevins, A., Brown, H., Karnik, A., and Du, R. (2001). Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Human Factors, 43(3), 366-380.
[56] Berger, H. (1929). Über das elektrenkephalogramm des menschen. European Archives of Psychiatry and Clinical Neuroscience, 87(1), 527-570.
[57] Heger, D., Putze, F., and Schultz, T. (2010, September). Online workload recognition from EEG data during cognitive tests and human-machine interaction. In Annual Conference on Artificial Intelligence (pp. 410-417). Springer Berlin Heidelberg.
[58] Evans, J. R., and Abarbanel, A. (Eds.). (1999). Introduction to quantitative EEG and neurofeedback. Elsevier.
[59] Huan, N. J., and Palaniappan, R. (2004). Neural network classification of autoregressive features from electroencephalogram signals for brain–computer interface design. Journal of neural engineering, 1(3), 142.
[60] Huan, N. J., and Palaniappan, R. (2005, March). Classification of mental tasks using fixed and adaptive autoregressive models of EEG signals. In Neural Engineering, 2005. Conference Proceedings. 2nd International IEEE EMBS Conference on (pp. 633-636). IEEE.
[61] Krusienski, D. J., McFarland, D. J., and Wolpaw, J. R. (2006, August). An evaluation of autoregressive spectral estimation model order for brain-computer interface applications. In Engineering in Medicine and Biology Society, 2006. EMBS′06. 28th Annual International Conference of the IEEE (pp. 1323-1326). IEEE.
[62] Blinowska, K. J., Czerwosz, L. T., Drabik, W., Franaszczuk, P. J., and Ekiert, H. (1981). EEG data reduction by means of autoregressive representation and discriminant analysis procedures. Electroencephalography and clinical Neurophysiology, 51(6), 650-658.
[63] Marple, L. (1977, May). Resolution of conventional Fourier, autoregressive, and special ARMA methods of spectrum analysis. In Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP′77. (Vol. 2, pp. 74-77). IEEE.
[64] Sanei, S., and Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.
[65] Demos, J. N. (2005). Getting started with neurofeedback. WW Norton & Company.
[66] Malmivuo, J., and Plonsey, R. (1995). Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA.
[67] Gevins, A., and Smith, M. E. (2006). Electroencephalography (EEG) in neuroergonomics. Neuroergonomics: The brain at work, 15-31.
[68] Klimesch, W., Freunberger, R., Sauseng, P., and Gruber, W. (2008). A short review of slow phase synchronization and memory: evidence for control processes in different memory systems?. Brain research, 1235, 31-44.
[69] Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022.
[70] Freunberger, R., Werkle-Bergner, M., Griesmayr, B., Lindenberger, U., and Klimesch, W. (2011). Brain oscillatory correlates of working memory constraints. Brain research, 1375, 93-102.
[71] Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain research reviews, 29(2), 169-195.
[72] Jensen, O., & Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8), 1395-1399.
[73] Pesonen, M., Hämäläinen, H., and Krause, C. M. (2007). Brain oscillatory 4–30 Hz responses during a visual n-back memory task with varying memory load. Brain research, 1138, 171-177.
[74] Sauseng, P., Griesmayr, B., Freunberger, R., and Klimesch, W. (2010). Control mechanisms in working memory: a possible function of EEG theta oscillations. Neuroscience & Biobehavioral Reviews, 34(7), 1015-1022.
[75] Stipacek, A., Grabner, R. H., Neuper, C., Fink, A., and Neubauer, A. C. (2003). Sensitivity of human EEG alpha band desynchronization to different working memory components and increasing levels of memory load. Neuroscience Letters, 353(3), 193-196.
[76] Krause, C. M., Pesonen, M., and Hämäläinen, H. (2010). Brain oscillatory 4–30 Hz electroencephalogram responses in adolescents during a visual memory task. Neuroreport, 21(11), 767-771.
[77] Antonenko, P. D., and Niederhauser, D. S. (2010). The influence of leads on cognitive load and learning in a hypertext environment. Computers in Human Behavior, 26(2), 140-150.
[78] Gerě, I., and Jaušcvec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational technology research and development, 47(3), 5-14.
[79] Kim, K. N., and Ramakrishna, R. S. (1999). Vision-based eye-gaze tracking for human computer interface. In Systems, Man, and Cybernetics, 1999. IEEE SMC′99 Conference Proceedings. 1999 IEEE International Conference on (Vol. 2, pp. 324-329). IEEE.
[80] Liversedge, S. P., and Findlay, J. M. (2000). Saccadic eye movements and cognition. Trends in cognitive sciences, 4(1), 6-14.
[81] Morimoto, C. H., and Mimica, M. R. (2005). Eye gaze tracking techniques for interactive applications. Computer vision and image understanding, 98(1), 4-24.
[82] Klin, A., Jones, W., Schultz, R., Volkmar, F., and Cohen, D. (2002). Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Archives of general psychiatry, 59(9), 809-816.
[83] Ettinger, U., Kumari, V., Crawford, T. J., Davis, R. E., Sharma, T., and Corr, P. J. (2003). Reliability of smooth pursuit, fixation, and saccadic eye movements. Psychophysiology, 40(4), 620-628.
[84] Marg, E. (1951). Development of electro-oculography: Standing potential of the eye in registration of eye movement. AMA archives of ophthalmology, 45(2), 169-185.
[85] Hansen, D. W., and Pece, A. E. (2005). Eye tracking in the wild. Computer Vision and Image Understanding, 98(1), 155-181.
[86] Wedel, M., and Pieters, R. (2008). A review of eye-tracking research in marketing. In Review of marketing research (pp. 123-147). Emerald Group Publishing Limited.
[87] Oyekoya, O. K., and Stentiford, F. W. (2008). Eye tracking: a new interface for visual exploration. In Multimodal Processing and Interaction (pp. 1-14). Springer US.
[88] Applied Science Laboratories. (2007). Eyenal (Eye-Analysis) Software Manual, Windows application Version 2.96, Manual Version 1.41. Applied Science Laboratories.
[89] Rao, R. P., Zelinsky, G. J., Hayhoe, M. M., and Ballard, D. H. (1997). Eye Movements in Visual Cognition A Computational Study. National Resource Laboratory for the Study of Brain Behavior, University of rochester.
[90] Bulling, A., Ward, J. A., Gellersen, H., and Troster, G. (2011). Eye movement analysis for activity recognition using electrooculography. IEEE transactions on pattern analysis and machine intelligence, 33(4), 741-753.
[91] Hyönä, J., and Niemi, P. (1990). Eye movements during repeated reading of a text. Acta Psychologica, 73(3), 259-280.
[92] Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372.
[93] Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. The quarterly journal of experimental psychology, 62(8), 1457-1506.
[94] Fischer, B., and Ramsperger, E. (1984). Human express saccades: extremely short reaction times of goal directed eye movements. Experimental Brain Research, 57(1), 191-195.
[95] Fischer, B., and Boch, R. (1983). Saccadic eye movements after extremely short reaction times in the monkey. Brain research, 260(1), 21-26.
[96] Rayner, K., and Bertera, J. H. (1979). Reading without a Fovea. In Science (pp. 468-469). American Association for the Advancement of Society.
[97] Yarbus, A. L. (1967). Eye movements during perception of complex objects (pp. 171-211). Springer US.
[98] Noton, D., and Stark, L. (1971). Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision research, 11(9), 929-IN8.
[99] Jacob, R. J., and Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. Mind, 2(3), 4.
[100] Dalmaijer, E. (2014). Is the low-cost EyeTribe eye tracker any good for research? (No. e585v1). PeerJ PrePrints.
[101] Ooms, K., Dupont, L., Lapon, L., and Popelka, S. (2015). Accuracy and precision of fixation locations recorded with the low-cost Eye Tribe tracker in different experimental setups. Journal of eye movement research, 8(1).
[102] Kasprowski, P., and Harezlak, K. (2015). Using non-calibrated eye movement data to enhance human computer interfaces. In Intelligent Decision Technologies (pp. 347-356). Springer International Publishing.
[103] Inoue, A., and Paracha, S. (2016, November). Identifying reading disorders via eye-tracking technology. In Advanced Materials for Science and Engineering (ICAMSE), International Conference on (pp. 607-610). IEEE.
[104] Zhang, X. B., Fan, C. T., Yuan, S. M., and Peng, Z. Y. (2015, December). An Advertisement Video Analysis System Based on Eye-Tracking. In Smart City/SocialCom/SustainCom (SmartCity), 2015 IEEE International Conference on (pp. 494-499). IEEE.
[105] Mavrikis, M. (2016, April). A study on eye fixation patterns of students in higher education using an online learning system. In Proceedings of the Sixth International Conference on Learning Analytics & Knowledge (pp. 408-416). ACM.
[106] http://theeyetribe.com
[107] Schmiedt, C., Brand, A., Hildebrandt, H., & Basar-Eroglu, C. (2005). Event-related theta oscillations during working memory tasks in patients with schizophrenia and healthy controls. Cognitive Brain Research, 25(3), 936-947.
[108] Kahana, M. J., Sekuler, R., Caplan, J. B., Kirschen, M., and Madsen, J. R. (1999). Human theta oscillations exhibit task dependence during virtual maze navigation. nature, 399(6738), 781.
[109] Lazarev, V. V. (1998). On the intercorrelation of some frequency and amplitude parameters of the human EEG and its functional significance. Communication I: Multidimensional neurodynamic organization of functional states of the brain during intellectual, perceptive and motor activity in normal subjects. International Journal of Psychophysiology, 28(1), 77-98.
指導教授 李柏磊(Po-Lei Lee) 審核日期 2017-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明