博碩士論文 104522076 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:3.15.18.189
姓名 鄭亦茵(Yi-Yin Zheng)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 應用於車輛影像之行人偵測系統
(Pedestrian Detection System for Vehicle Images)
相關論文
★ 使用視位與語音生物特徵作即時線上身分辨識★ 以影像為基礎之SMD包裝料帶對位系統
★ 手持式行動裝置內容偽變造偵測暨刪除內容資料復原的研究★ 基於SIFT演算法進行車牌認證
★ 基於動態線性決策函數之區域圖樣特徵於人臉辨識應用★ 基於GPU的SAR資料庫模擬器:SAR回波訊號與影像資料庫平行化架構 (PASSED)
★ 利用掌紋作個人身份之確認★ 利用色彩統計與鏡頭運鏡方式作視訊索引
★ 利用欄位群聚特徵和四個方向相鄰樹作表格文件分類★ 筆劃特徵用於離線中文字的辨認
★ 利用可調式區塊比對並結合多圖像資訊之影像運動向量估測★ 彩色影像分析及其應用於色彩量化影像搜尋及人臉偵測
★ 中英文名片商標的擷取及辨識★ 利用虛筆資訊特徵作中文簽名確認
★ 基於三角幾何學及顏色特徵作人臉偵測、人臉角度分類與人臉辨識★ 一個以膚色為基礎之互補人臉偵測策略
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 行人偵測系統發展至今出現了許多優秀的方法,而駕駛輔助系統的普及和自動駕駛汽車的出現更是讓行人偵測有了更高的實用價值與更多的應用空間。由於近年深度學習的興起,漸漸地出現了結合深度學習與行人偵測的研究,但深度學習不論是學習或是偵測時皆需要高階硬體以供其龐大的運算量,阻礙了於行人偵測上的實用性。本研究在不使用並行運算與能在一般硬體運行的條件下,設計出一套應用於車輛影像的行人偵測系統。
在本研究中,我們先根據影片的攝影機狀況預測感興趣區域(ROIs,Region of Interest),以減少不必要的特徵計算與目標搜尋。接著在計算特徵時使用快速特徵金字塔(Fast Feature Pyramids)算法,進一步減少特徵計算階段的耗時。最後以 Cascade DPM(Deformable Part Models)方法偵測出行人。在小幅降低精度(Precision)與召回率(Recall)的狀況下,將整體系統之運算速度提升到Cascade DPM的2.54倍。
摘要(英)
There are many mature pedestrian detection methods that had been developed so far. The widespread popularity of driving support system and the emerging of unmanned vehicles let pedestrian detection possesses more practical value and wider application space. Due to the arising of deep learning recently, there is a trend by incorporating deep learning into pedestrian detection. However, deep learning requires high-level hardware and tremendous amount of computation no matter in learning or detection to hinder the practicality of pedestrian detection. In this thesis, a pedestrian detection system is designed for vehicle images without using concurrent computation which can run under general hardware.
In our work, the ROIs (Region of Interest) are firstly predicted based on the camera status of video to reduce unnecessary feature calculation and target search. Then, the Fast Feature Pyramids algorithm is employed to calculate features to further reduce the time spent in the feature calculation phase. Finally, Cascade DPM (Deformable Part Models) method is utilized to detect pedestrians. The speed of our proposed system can uplift the speed to 2.54 times faster than Cascade DPM with slightly lowering precision and recall rate.
關鍵字(中) ★ 行人偵測
★ 感興趣區域
★ 方向梯度直方圖
★ 快速特徵金字塔
★ Cascade DPM
關鍵字(英) ★ Pedestrian detection
★ Region of Interest
★ Histograms of Oriented Gradient
★ Fast Feature Pyramids
★ Cascade DPM
論文目次
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 論文架構 5
第二章 文獻探討 6
2.1 HOG特徵 6
2.2 快速特徵金字塔 8
2.3 DPM 物件偵測 9
2.4 Cascade DPM 物件偵測 13
第三章 行人偵測系統 15
3.1 車用影像的多尺度ROI預測 16
3.2 ROI對快速特徵金字塔的影響 19
3.3 快速特徵的得分修正 21
第四章 實驗結果討論 22
4.1 實驗設備與環境 22
4.2 測試影片說明 22
4.3 快速特徵的偏差值 23
4.4 利用ROI減少的計算量 24
4.5 實驗結果與比較 24
4.6 結果討論 34
第五章 結論與未來展望 37
5.1 研究結論 37
5.2 未來展望 37
參考文獻 38
參考文獻 [1] (2016-2017). Retrieved from PILOT: http://www.pilotlab.co/
[2] A. Mohan, C. Papageorgiou, and T. Poggio. (2010, April). Example-based object detection in images by components. Pattern Analysis and Machine Intelligence (PAMI), pp. 349-361.
[3] C. Papageorgiou and T. Poggio. (2000). A trainable system for object detection. International Journal of Computer Vision (IJCV), (pp. 15-33).
[4] Charles Dubout and François Fleuret. (2012). Exact Acceleration of Linear Object Detectors. European conference on Computer Vision (ECCV) (pp. 301-311). Florence, Italy: Springer.
[5] Chi-Hong Kuo. (2011). Monocular-vision pedestrian detection and tracking. Unpublished Master Thesis.
[6] D.L. Ruderman and W. Bialek. (1994, Aug.). Statistics of Natural Images: Scaling. Physical Rev. Letters, pp. 814-817.
[7] Dalal, N. (n.d.). INRIA Person Dataset. Retrieved from INRIA: http://pascal.inrialpes.fr/data/human/
[8] Felzenszwalb, P. F. (2012). voc-release5. Retrieved from Discriminatively trained deformable part models: https://dl.dropboxusercontent.com/s/gh7reh931y1wqmf/voc-release5.tgz?dl=0
[9] Felzenszwalb, P. F. (2013). voc-release3.1. Retrieved from Discriminatively trained deformable part models: http://cs.brown.edu/~pff/latent-release3/voc-release3.1.tgz
[10] Junjie Yan, Zhen Lei, Longyin Wen, and Stan Z. Li. (2014). The Fastest Deformable Part Model for Object Detection. Computer Vision and Pattern Recognition (CVPR) (pp. 2497-2504). Columbus, OH, USA: IEEE.
[11] Marco Pedersoli, Andrea Vedaldi, and Jordi Gonzàlez. (2011). A coarse-to-fine approach for fast deformable object detection. Computer Vision and Pattern Recognition (CVPR) (pp. 1353-1360). Colorado Springs, CO, USA, USA: IEEE.
[12] Mohammad Amin Sadeghi, and David Forsyth. (2014). 30Hz Object Detection with DPM V5. European Conference on Computer Vision (ECCV) (pp. 65-79). Zurich, Switzerland: Springer.
[13] N. Dalal and B. Triggs. (2005). Histograms of oriented gradients for human detection. Computer Vision and Pattern Recognition (CVPR) (pp. 886-893). San Diego, CA, USA, USA: IEEE.
[14] Open Source Computer Vision Library. (2017). Retrieved from OpenCV: http://opencv.org/
[15] P. Dollár, S. Belongie, and P. Perona. (2010). The Fastest Pedestrian Detector in the West. British Machine Vision Conf (BMVC).
[16] P. Dollár, Z. Tu, P. Perona, and S. Belongie. (2009). Integral Channel Features. British Machine Vision Conf. (BMVC).
[17] Pedro F. Felzenszwalb, Ross B. Girshick, and David McAllester. (2010). Cascade Object Detection with Deformable Part Models. Computer Vision and Pattern Recognition (CVPR) (pp. 2241-2248). San Francisco, CA, USA: IEEE.
[18] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester, and Deva Ramanan. (2010). Object Detection with Discriminatively Trained Part-Based Models. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1627 - 1645.
[19] Pedro Felzenszwalb, David McAllester, and Deva Ramanan. (2008). A Discriminatively Trained, Multiscale, Deformable Part Model. Computer Vision and Pattern Recognition (CVPR). Anchorage, AK, USA: IEEE.
[20] Perspective (graphical). (n.d.). Retrieved from Wikipedia: https://en.wikipedia.org/wiki/Perspective_(graphical)#/media/File:Drawing_Square_in_Perspective_2.svg
[21] Piotr Dollár, Ron Appel, Serge Belongie, and Pietro Perona. (2014, January 16). Fast Feature Pyramids for Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1532-1545.
[22] Ruderman, D. (1994). The Statistics of Natural Images. Network: Computation, pp. 517-548.
[23] S. Belongie, J. Malik, and J. Puzicha. (2001). Matching shapes. International Conference on Computer Vision (ICCV) (pp. 454-461). Vancouver, Canada: IEEE.
[24] The PASCAL Visual Object Classes Homepage. (n.d.). Retrieved from PASCAL VOC project: http://host.robots.ox.ac.uk/pascal/VOC/
[25] Y. Ke and R. Sukthankar. (2004). Pca-sift: A more distinctive representation. Computer Vision and Pattern Recognition (CVPR) (pp. 66-75). Washington, DC, USA, USA: IEEE.
指導教授 范國清、謝君偉 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明