博碩士論文 104522087 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:92 、訪客IP:18.188.180.32
姓名 許哲昇(Che-Sheng Hsu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用長短期記憶深度學習 之機器剩餘可用壽命預估
(Long Short-Term Memory Deep Learning for Estimating Machinery Remaining Useful Life)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,發展智慧工廠成為全球製造業的目標,結合了人工智慧、物聯網、大數據和雲端運算等先進技術,希望以機器人、智慧製造和智慧服務等面向做到「智動化」,有助於提升生產的效率和商品的良率,並解決人力短缺、市場需求變化大的問題。本篇論文著重於預測機器剩餘可用壽命(Remaining Useful Life, RUL),屬於機器健康預診斷(Prognosis)的應用,可用於預估機器剩餘可用壽命,在機器停止運作前,提早進行維修或更換,以降低機器突然停機所造成的損害,提高系統的運行可靠性。
本論文提出一個深度學習(Deep Learning)的方法,建構深度神經網路(Deep Neural Network)以預估機器剩餘可用壽命。所提之方法基於時間遞歸神經網路(Recurrent Neural Network, RNN)中的長短期記憶(Long Short-Term Memory, LSTM)模式。LSTM比傳統RNN更適合於處理和預測時間序列中間隔和延遲非常長的重要相關資訊,可以有效找出時間序列中的間隔相當長的相關資訊特徵。我們希望使用LSTM長記憶的特性,準確預估機器剩餘可用壽命。
為了驗證所提方法的效能,以NASA C-MAPSS(Commercial Modular Aero-Propulsion System Simulation)包含二百多組引擎模擬資料的資料集做驗證,並且與文獻中的MLP、SVR、RVR和CNN方法做比較。結果顯示,無論是在均方根差(Root Mean Squared Error, RMSE)還是在資料集本身定義的Scoring Function上,所提的方法都是最佳的。本論文最後並提出實作上的觀察和所提方法未來可能的應用場景。
摘要(英)
In recent years, it is a worldwide goal to develop smart factories by integrating the artificial intelligence, Internet of Things and cloud computing technologies. Smart factories can achieve higher yield rates and better quality; they can also mitigate the problems of labor shortage and react properly to the dynamically changing of market. This thesis focuses on Remaining Useful Life (RUL) estimation, which is a part of the prognosis application. By accurate RUL estimation, machines or components can be repaired or replaced before they malfunction to cause the production line or the system to stop unexpectedly. This can reduce the damage caused by an unexpected shutdown, and reduce the cost of management.
In this paper, we propose a deep learning method to construct deep neural networks for the RUL estimation. The proposed method is based on the Long Short-Term Memory (LSTM) model, which belongs to the category of Recurrent Neural Networks (RNNs). LSTM is more suitable for dealing with long-sequenced data of time series than general RNNs, and it can effectively extract and memorize significant relationship of data items which are apart from one another in the time series. It is believed that the memory characteristic in LSTM is useful for predicting RUL.
The NASA C-MAPSS (Commercial Modular Aero-Propulsion System Simulation) data set of hundreds of propulsion engines is applied to the proposed method for performance evaluation. The evaluation results are compared with those of the MLP, SVR, RVR and CNN methods proposed in the literature. The comparisons indicate that the proposed method is the best among all compared methods in terms of the Root Mean Squared Error (RMSE) and the Scoring Function. At the end of this thesis, we describe some observations and possible application scenarios of the proposed method.
關鍵字(中) ★ 智慧工廠
★ 剩餘可用壽命
★ 深度學習
★ 深度神經網路
★ 長短期記憶
關鍵字(英) ★ Smart Factory
★ Remaining Useful Life
★ Deep Learning
★ Deep Neural Network
★ Long Short-Term Memory
論文目次
中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
一、緒論 1
1-1研究背景與動機 1
1-2研究目的與貢獻 2
1-3論文架構 2
二、背景知識 3
2-1人工神經網路(Artificial Neural Network, ANN) 3
2-1-1神經網路的原理 3
2-1-2神經網路的架構 4
2-1-3神經網路的學習方式 6
2-1-4倒傳遞學習演算法(Back-Propagation Algorithm) 8
2-2深度學習(Deep Learning) 9
2-2-1深度學習介紹 9
2-2-2遞歸神經網路(Recurrent Neural Network, RNN) 11
2-2-3長短期記憶(Long Short-Term Memory, LSTM) 12
2-3剩餘可用壽命(Remaining Useful Life, RUL) 16
三、問題定義與研究 18
3-1問題定義 18
3-2文獻研究 21
四、研究方法 24
4-1資料前處理 24
4-1-1標籤定義 24
4-1-2資料標準化 25
4-2網路架構 27
五、實驗與分析 30
5-1實驗環境 30
5-2實驗結果 31
5-3實驗觀察與分析 35
六、結論與未來展望 38
參考文獻 39
參考文獻
[1] Zhou Dong-Hua, Wei Mu-Heng, Si Xiao-Sheng, “A Survey on Anomaly Detection, Life Prediction and Maintenance Decision for Industrial Processes” , in ACTA AUTOMATICA SINICA 39(6):711-722, June 2014.
[2] Giduthuri Sateesh Babu, Peilin Zhao, and Xiao-Li Li, “Deep Convolutional Neural Network Based Regression Approach for Estimation of Remaining Useful Life”, S.B. Navathe et al. (Eds.): DASFAA 2016, Part I, LNCS 9642, pp. 214–228, 2016.
[3] David E. Rumelhart, Geoffrey E. Hinton, Ronald J. Williams, “Learning representations by back-propagating errors”, Nature, 323, 533—536, 1986.
[4] Understanding LSTM Networks:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/.
[5] Sepp Hochreiter, Jürgen Schmidhuber, “Long Short-Term Memory”, in Neural Computation 9(8):1735-80, December 1997.
[6] Rui Zhao, Ruqiang Yan, Zhenghua Chen, Kezhi Mao, Peng Wang, and Robert X. Gao, “Deep Learning and Its Applications to Machine Health Monitoring: A Survey”, Journal of Latex Class Files, Vol. 14, No. 8, August 2015.
[7] Wang, P., Youn, B.D., Hu, C., “A generic probabilistic framework for structural health prognostics and uncertainty management”, Mech. Syst. Sig. Process. 28,
622–637 (2012).
[8] T. Wang, J. Yu, D. Siegel, J. Lee, “A similarity-based prognostics approach for remaining useful life estimation of engineered systems”, in: Proceedings of the IEEE International Conference on Prognostics and Health Management(2008).
[9] Chang, C.C., Lin, C.J., “LIBSVM: a library for support vector machines”, ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011).
[10] Tipping, M.E., “The relevance vector machine”, in Solla, S.A., Leen, T.K., Muller, K.R. (eds.) Advances in Neural Information Processing Systems, vol. 12, pp. 652–658. MIT Press, Cambridge (2000).
[11] Mei Yuan, Yuting Wu, Li Lin, “Fault diagnosis and remaining useful life estimation of aero engine using LSTM neural network”, Aircraft Utility Systems (AUS), IEEE International Conference, Oct, 2016.
[12] Pankaj Malhotra, Vishnu TV, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal, Gautam Shroff, “Multi-Sensor Prognostics using an Unsupervised Health Index based on LSTM Encoder-Decoder”, 1st ACM SIGKDD Workshop on Machine Learning for Prognostics and Health Management, San Francisco, CA, USA, 2016.
[13] Rui Zhao, Ruqiang Yan, Jinjiang Wang, Kezhi Mao, “Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks”, Sensors (Basel) 17 (2), 2017.
[14] Neural Networks for Machine Learning: https://zh-tw.coursera.org/learn/neural-networks.
[15] Duchi, J., Hazan, E., & Singer, Y., “Adaptive Subgradient Methods for Online Learning and Stochastic Optimization”, Journal of Machine Learning Research, 12, 2121–2159, 2011.
[16] Keras Documentation: https://keras.io/.
[17] Evaluation of Deep Learning Toolkits: https://github.com/zer0n/deepframeworks/blob/master/README.md
[18] Shaohuai Shi, Qiang Wang, Pengfei Xu, Xiaowen Chu, “Benchmarking State-of-the-Art Deep Learning Software Tools”, in: Proceedings of the 7th IEEE International Conference on Cloud Computing and Big Data, Macau, China, 2016.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明