博碩士論文 104522089 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.80.160.29
姓名 簡嘉慶(Jia-Ching Jian)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱
(Very High Precision Optical Character Recognition For Clean-Fixed-Sized True Type Characters)
相關論文
★ 使用PolyTraceAid進行程式文件覆蓋率計算與分群★ Support Visual Debugging in Electronic Design Automation Software by xDIVA
★ 設計與實作視覺化追蹤點以支援xDIVA進行程式動畫★ Combine Internal Test Oracles and Capture/Replay GUI Testing for Precise Replay and Higher Validation Power
★ Dissimilarity of Polymorphic Execution Sequences★ The Analysis of Capturing System Test Cases into Unit Test Cases
★ 動態延遲載入的測試覆蓋率★ 建構於JMeter之自動化分散式壓力測試架構
★ 模組化因修改具耦合的程式碼所伴隨的成本漣漪★ Design a Pluggable Architecture for Layout Algorithms in xDIVA
★ 重複性程式碼檢測之外掛模組設計★ Visual Perception of Realistic Rendering in xDiva 3D Environment
★ Why and When GUI Test Automation Fails in Practice and Our Solutions to The Problem★ Why and When GUI Test Automation Fails in Practice and Our Solutions to The Problem
★ Enhance Korat by Branch Capability in Capture/Replay User Scenario to Industrial Test Case Automation★ implement race detection functionality inXThreadDebugger base on pluggable modulesystem
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 光學文字辨識(OCR)已經是個發展多年的技術,但是現今卻還沒有一個辨識率百分之百的工具。這個問題是因為辨識影像的來源有很多種不同的狀況,例如文字影像的品質、各式各樣的文章排版、不同的語言、千變萬化的字體、大大小小的文字。只要有其中一項變動,就會對辨識率有極大的影響。
本研究是要應用在本實驗室之 Korat 自動化回歸測試系統上,辨識影像的來源是由 Korat 擷取待測系統的螢幕。因為辨識的影像來源是從螢幕截圖,所以影像會是端正、乾淨且無雜訊。基於這個特性,本研究不需要面對一般 OCR 工具會遇到的情況,如影像歪斜和雜訊干擾的問題。但是會面臨到辨視率需要100%的需求,所以即使在市面上有諸多的 OCR 工具的辨識率都有 88%-95%左右,但仍然無法符合實際應用在 Korat 的系統上的要求。
本研究使用樣板比對的方法結合動態規劃的演算法,在所有可能的辨識組合中,比較剩餘的像素總和,以剩餘最小的組合視為最佳解,藉此辨識率 100%。
摘要(英)
Optical Character Recognition has been studied for many years. However, no OCR tools can claim 100% recognition rate because of the variation in image quality, documentation layout, character fonts and sizes. When there are changes in one of them, recognition rate is often greatly impacted.
Korat is an image-based test regression tool developed in our lab. Korat captures the screen image from a system under test. Therefore, the image is clean, no noises, and no rotation. Based on this condition, we do not deal with situations like image noises, which makes OCR a difficult problem in this thesis.
In Korat′s practical applications, nearly 100% recognition rate is often required. So even there are many existing OCR tools with 88-95% recognition rate, they do not meet the requirements of Korat′s practical applications.
In this research, we combine the template matching and dynamic programming algorithm to find the optimal solution with the smallest sum of remaining pixels in all possible combinations of recognition so that the recognition rate could be achieved 100% at nearly.
關鍵字(中) ★ 光學文字辨識
★ 動態規劃
關鍵字(英) ★ OCR
★ Dynamic Programming
★ True Type
★ Korat
論文目次


摘要 i
Abstract ii
Contents iii
List of Figures v
Chapter 1 Introduction 1
1.1 Automated Regression Testing 1
1.2 Practical OCR Precision Requirement of Korat 2
1.3 Problems in Segmentation 3
1.4 OCR by Template Matching and Dynamic Programming 5
Chapter 2 Background and Related Works 6
2.1 Korat [3] 6
2.2 True Type Font 7
2.3 Optical Character Recognition Technology [4][5] 7
2.3.1 Pre-preprocessing [6] 8
2.3.2 Classification 10
2.3.3 Post-processing [13] 12
2.4 Existing OCR Tools 12
2.4.1 Tesseract-OCR[8][9] 12
2.4.2 ABBYY FineReader[10] 12
2.4.3 Adobe Acrobat Pro DC[11] 14
2.5 Template Matching 15
2.6 Dynamic Programming Algorithm 16
Chapter 3 Combine Tm and DP for OCR 19
3.1 Problems Analysis 19
3.2 Image Preprocessing 20
3.3 Classification by Template Matching 20
3.4 The research problems 21
3.5 Solution to deal with influence of boundary pixels 23
3.6 Solution to deal with overlapped problem 23
3.7 Problems in TMM and minimized template 24
3.8 Combination by TMM and DP 25
3.8.1 The optimization problem comes to mind 25
3.8.2 DP to solve the optimization problem 25
Chapter 4 Preparation of Template Data 28
4.1 Preparation 28
4.2 Image Processing in Template Data 28
4.3 Character Display Tool. 29
Chapter 5 Experiment 32
5.1 Description of Test Data 32
5.2 Comparison of Recognition Rate 32
5.3 Special cases 35
5.4 Speed of Recognition 36
5.5 Font Extension 37
5.6 Test Result Description 37
Chapter 6 Conclusion and Future Works 38
Chapter 7 Reference 40
參考文獻
[1] Leung, H. K. and L. White (1989). Insights into regression testing [software testing]. Software Maintenance, 1989., Proceedings., Conference on, IEEE.
[2] Wiki. Computer font. Available from: https://en.wikipedia.org/wiki/Computer_font#Outline_fonts.
[3] Chen, X.-C. Korat: An O.S.-independent Capture/Replay Test Automation System. Institute of Computer Science & Information Engineering, National Central University, National Central University. Master of Science.
[4] Zhu, W., Y. Liu, and L. Hao. A Novel OCR Approach Based on Document Layout Analysis and Text Block Classification. in 2016 12th International Conference on Computational Intelligence and Security (CIS). 2016.
[5] Govindan, V.K. and A.P. Shivaprasad, Character recognition — A review. Pattern Recognition, 1990. 23(7): p. 671-683.
[6] Wiki. "Optical character recognition." from https://en.wikipedia.org/wiki/Optical_character_recognition..
[7] Trier, Ø. D., et al. (1996). "Feature extraction methods for character recognition-a survey." Pattern recognition 29(4): 641-662.
[8] Smith, R., An Overview of the Tesseract OCR Engine, in Proceedings of the Ninth International Conference on Document Analysis and Recognition. 2007, IEEE Computer Society. p. 629-633.
[9] Smith, R.W. History of the Tesseract OCR engine: what worked and what didn′t. in IS&T/SPIE Electronic Imaging. 2013. International Society for Optics and Photonics.
[10] ABBYY. Feature of ABBYY FineReader 14 Professional. Available from: https://www.abbyy.com/en-us/.
[11] Adobe. Feature of Adobe Acrobat DC. Available from: https://acrobat.adobe.com/us/en/acrobat/how-to/ocr-software-convert-pdf-to-text.html.
[12] Wiki. Template Matching. Available from: https://en.wikipedia.org/wiki/Template_matching
[13] Y. Bassil, a.M.A., OCR post-processing error correction algorithm using Google’s Online spelling suggestion. Journal of Emerging Trends in Computing and Information Sciences, 2012.
[14] Gupta, G., et al. Document Layout Analysis and Classification and Its Application in OCR. in 2006 10th IEEE International Enterprise Distributed Object Computing Conference Workshops (EDOCW′06). 2006.
[15] Wiki. Dynamic programming. Available from: https://en.wikipedia.org/wiki/Dynamic_programming.
[16] Vamvakas, G., et al. A Complete Optical Character Recognition Methodology for Historical Documents. in 2008 The Eighth IAPR International Workshop on Document Analysis Systems. 2008.
[17] OpenCV. OpenCV: Template Matching. Available from: http://docs.opencv.org/trunk/d4/dc6/tutorial_py_template_matching.html.
指導教授 鄭永斌(Yung-Pin Cheng) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明