博碩士論文 104523040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:18.207.240.230
姓名 林庭甄(Ting-Chen Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 超低複雜度演算法實現地震預警系統
(An Ultra-Low Complexity Algorithm (ULCA) for Earthquake Early Warning System)
相關論文
★ 利用智慧天線系統實現精準室內定位技術★ 電力線通訊之競爭存取與路由方法設計與實現
★ 設計與實作基於GRAPES函式庫之P2P即時串流系統★ 利用離散餘弦基礎之聲音浮水印達到室內定位技術
★ 利用虛擬指紋建置法之智慧型天線系統實現精準室內定位技術★ 即時影像串流自適應播放系統之研究
★ 利用模糊邏輯控制器於蜂巢式網路降低位置管理機制成本★ 基於支持向量機及模糊推理之地震預警系統研製
★ 基於行動裝置之分散式多人會議系統★ 以分群為基礎之3D無線與光學網路晶片頻道存取方法
★ 基於收前先聽LBR機制之授權型輔助接入LAA架構下於異質網路中暴露節點之研究★ 支援跳頻之IEEE 802.15.4 ZigBee無線隨身網路機制設計與實現
★ 應用於IEEE 802.16行動無線都會網路省電模式參數設定之智慧策略★ IEEE 802.15.4 ZigBee 無線隨身網路高效能路由演算法分析與設計
★ 應用於IEEE 802.16無線寬頻都會網路之具調適性自動重傳請求回報機制★ 無線感測網路為基礎之空間平面圖自動建構之技術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地震是重大的天然災害之一,往往造成數以千計的人民及財物的損傷。根據資料統計,全球每年地震發生的次數約為500萬次,而規模5級以上的地震次數約2000次。2016年2月台灣南部發生高雄美濃地震,是繼921大地震後最嚴重的地震,造成傷亡非常嚴重。地震發生時,若能爭取到數秒的時間做出立即應變,就能避免造成生命危險,因此,地震預警的需求已經成為不可忽視的重要議題。
地震預警除了必須快速地傳遞地震訊息之外,更需要精確又快速的演算法協助判別地震。目前美國、加拿大、日本、台灣皆投入地震預警相關的研究,然而以往地震預警的方法如:類神經網路、多樣本中位數差異檢定 (Kruskal-Wallis test)、傅立葉轉換、小波轉換、向量支持機 (Support vector machine) 等等,皆為複雜度較高的演算法,若應用於普及的裝置如智慧型手機、平板電腦、IoT裝置等等,可能導致運算量過高而無法發揮及時性。現今的地震預警系統期望能使用大量裝置形成地震網絡以增加回報的可靠度,因此計算複雜度過高的演算法不利於一般設備上實現。
本論文以輕量化地震預測演算法的角度出發,希望藉由降低地震預測演算法之複雜度加速判別地震,並且利用大量的真實地震事件作為分析的樣本,驗證演算法達到精確及快速的判別。
摘要(英)
Earthquake is one of the major natural disasters, which could kill or injure thousands of people and cause huge property loss. According to the statistics, the number of earthquake events is about five million times per year and two thousands of them exceed magnitude 5. If we can win few seconds before the earthquake comes, it may save lots of lives and reduce economic losses. The earthquake early warning becomes an issue that cannot be ignored.
Earthquake early warning system (EEWS) needs rapid transmission of seismic information. Moreover, it requires accurate and fast algorithm to support the detection of earthquakes. In the past decades, progress has been made to invest the EEWS in countries where earthquake occurs frequently. For example, the United States of America, Canada, Japan and Taiwan have participated in doing the researches of EEWS. The earthquake warning detection methods such as: Artificial Neural Networks, Kruskal-wallis test, Fourier transform, Wavelet transform, Support Vector Machine are potential algorithms with high complexity. Nowadays, the EEWS is expected to use a large number of devices to form an earthquake detection network to increase the reliability. However, the algorithms with high computation complexity are not conducive to be implemented on general devices, such as smart phones, tablets or IoT-devices.
In this thesis, we aim to reduce the complexity of the seismic algorithm. To accomplish it, we use a large number of real earthquake events as the analysis samples to verify the algorithm and improve accuracy.
關鍵字(中) ★ 地震預警系統
★ 地震預警演算法
關鍵字(英) ★ Earthquake Early Warning System
★ Seismic Algorithm
★ Ultra-Low Complexity
論文目次
中文摘要 i
ABSTRACT ii
CONTENT iii
LIST OF FIGURES iv
LIST OF TABLES v
1 INTRODUCTION 1
2 RELATED WORKS 4
2.1 Earthquake Detecting Algorithm with STA/LTA and RV2T 4
2.2 Earthquake Detecting Algorithm with Artificial Neural Networks 6
2.3 Earthquake Detecting Algorithm with Kruskal-Walli Test 8
2.4 Earthquake Detecting Algorithm with Support Vector Machine and Fuzzy Inference 9
2.5 Earthquake Detecting Algorithm with Variance Mean 10
3 ULTRA LOW COMPLEXITY ALGORITHM (ULCA) 13
3.1 Convert Discrete Data to Continuous Data with Moving Average 14
3.2 Choose the Turning Points 14
3.3 Calculate Square Deviation from Mean (SDM) of Turning Points 15
3.4 The Flow Chart of Proposed ULCA 17
3.5 Simplified ULCA (S-ULCA) 18
3.6 Time Complexity 22
4 SIMULATION RESULTS 29
4.1 Seismic Data Source 29
4.2 The Accuracy and the Performance of Algorithm 30
5 CONCLUSIONS 33
6 REFERENCE 34
參考文獻
[1] Komalpreet Kaur, Manish Wadhwa and E. K. Park, "Detection and Identification of Seismic P-Waves using Artificial," IJCNN, pp. 1-6, 2013.
[2] Ana Zambrano, Israel Perez, Carlos Palau and Manuel Esteve, "Quake detection system using smartphone-based wireless sensor network for early warning," PERCOM WORKSHOPS, pp. 297 - 302, May 2014.
[3] Narasimha Prasad, Kishor Kumar Reddy and Ramya Tulasi, "A Novel Approach for Seismic Signal Magnitude Detection Using Haar Wavelet," 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, pp. 324 - 329, Jan 2014.
[4] W.-H. Wang and Shiann-Tsong Sheu, "Implementation of Earthquake Early Warning System Based on Support Vector Machine and Fuzzy Inference," Jul 2015.
[5] Yogesh Sherki, Nikhil Gaikwad and Jayalakshmi Chandle, "Design of real time sensor system for detection and processing of seismic waves for earthquake early warning system," ICPACE, pp. 285 - 289, Aug 2015.
[6] Meng-Yun Hsu and Shiann-Tsong Sheu, "A low complexity algorithm for earthquake detection system," ICCP, Sept 2016.
[7] "Round-trip delay time," Wikipedia, May 2017. [Online]. Available: https://en.wikipedia.org/wiki/Round-trip_delay_time. [Accessed Jun 2017].
[8] "Cortex-M4 Technical Reference Manual," ARM, 2010. [Online]. Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0439b/CHDDIGAC.html. [Accessed Jun 2017].
[9] GR Helffrich and BJ Wood, "The Earth′s Mantle," Nature. Macmillan Magazines, no. 412, 2002.
[10] Koné Mamadou Tadiou, "Artificial Neural Networks," Center for Evolutionary Technologies, [Online]. Available: http://futurehumanevolution.com/artificial-intelligence-future-human-evolution/artificial-neural-networks. [Accessed Jun 2017].
[11] "Central Weather Bureau," [Online]. Available: http://www.cwb.gov.tw/V7/earthquake/damage_eq.htm. [Accessed Jun 2017].
[12] "Japan Meteorological Agency," [Online]. Available: http://www.jma.go.jp/jma/index.html. [Accessed Jun 2017].
[13] Aldo Zollo, Ortensia Amoroso, Maria Lancieri, Yih-Min Wu and Hiroo Kanamori, "A threshold-based earthquake early warning using dense accelerometer networks," Geophysical Journal International, pp. 963-974, Nov 2010.
[14] Qingkai Kong, Richard M. Allen, Louis Schreier and Young-Woo Kwon, "MyShake: A smartphone seismic network for earthquake early warning and beyond," Science Advances, Feb 2016.
[15] Michael Olson, Annie Liu, Matthew Faulkner and K. Mani Chandy, "Rapid Detection of Rare Geospatial Events Earthquake Warning Applications," Proceedings of the 5th ACM international conference on Distributed event-based system, pp. 89-100, Jul 2011.
[16] Jens Nachtigall and Jens-Peter Redlich, "Wireless Alarming and Routing Protocol for Earthquake Early Warning Systems," 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Feb 2011.
[17] Navid Rajabi and Omid Rajabi, "Real time earthquake prediction using cross-correlation analysis & transfer function model," 2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), pp. 238 - 242, 2015.
[18] S. J. Rastin, C. P. Unsworth, K. R. Gledhill, G. G. Coghill, M. Chadwick and R. Robinson, "Iterative Coupling of Standardised Earthquake Detection & Wavelet Thresholding to Determine Simplified Earthquake Event Waveforms (SEEW)," 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010), pp. 173 - 176, Oct 2010.
[19] Alexander Mordvintsev and Abid K. Revision, "Understanding SVM," 2013. [Online]. Available: http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_ml/py_svm/py_svm_basics/py_svm_basics.html. [Accessed Jun 2017].
[20] "Fuzzy logic," Wikipedia, [Online]. Available: https://en.wikipedia.org/wiki/Fuzzy_logic. [Accessed Jun 2017].
[21] "drawing back propagation neural network," [Online]. Available: https://tex.stackexchange.com/questions/162326/drawing-back-propagation-neural-network. [Accessed Jun 2017].
指導教授 許獻聰(Shiann-Tsong Sheu) 審核日期 2017-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明