博碩士論文 104523041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:34.229.119.29
姓名 宋韶恩(Shao-En Shung)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於LWA架構之物聯網上行資料排程與資源分配方法之研究
(The Study of IoT Data Scheduling and Resource Allocation for Uplink Based on LTE-WLAN Aggregation)
相關論文
★ 應用MSPP至DWDM都會光纖網路的設計★ 光網路與WiMAX整合架構研究及其簡化雛型實驗
★ 以Linux系統為基礎之NAT效能優化研究及其實作★ 光波長劃分多工網路之路徑保護機制研究
★ 標籤交換網路下具有服務品質路由安排之研究★ 以訊務相關性為基礎的整合性服務可調整QoS排程器之研究
★ 以群體播送支援IPv6環境下移動式網路連結更新之研究★ 無線區域網路資源動態分配之效能研究
★ 在微觀移動環境下有效資源保留之路徑管理研究★ 無線網路交握程序之預先認證方法分析與比較
★ 無線區域網路虛擬允入控制之研究★ IPv6環境下移動網路之連結更新程序及其效能之研究
★ 具有限數量波長轉換節點的分波多工網路之群播波長分配與容量計算研究★ 階層化行動式IPv6移動錨點選擇機制研究
★ 具高能量移動節點之叢集式感測網路 效能研究★ 預先註冊之快速換手階層化行動式IPv6研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2020-9-1以後開放)
摘要(中) 為因應物聯網的應用,第三代合作夥伴計畫(3rd Generation Partnership Project, 3GPP)與WiFi聯盟分別提出了窄頻物聯網(Narrowband Internet of Things, NB-IoT)與802.11ah技術,其中NB-IoT針對上行排程部分提出改善,以子載波與時槽數目決定排程的長短,以因應以上行為主的物聯網設備,而802.11ah則是提出了限制存取視窗(Restricted Access Window)技術以解決大量設備同時競爭的問題,因此如何解決大量上行資料與設備競爭為一重要議題。
物聯網設備的資料型態可分為週期與非週期性,非週期性資料中以警報資料的延遲性最為敏感,由於當事件發生時大量設備會同時發出警報,造成嚴重競爭進而影響整體延遲時間,故本論文希望改善設備競爭問題降低整體延遲時間,同時協調週期與非週期性資料以提升整體系統效能。
本論文透過LWA(LTE-WLAN Aggregation)架構,結合NB-IoT與802.11ah,協調週期性與非週期性資料的傳送排成,以有效使用無線電資源,降低整體延遲時間,實驗模擬結果也驗證所提出方法可達成以上目標。
摘要(英)
3GPP and WiFi Alliance proposed the NB-IoT and 802.11ah technology respectively for the IoT application. It improves the scheduling for uplink which determines the length of NPUSCH(Narrowband Physical Uplink Shared Channel) by the number of subcarriers and slots in NB-IoT. This design is for the IoT devices which have more data in uplink. In 802.11ah, it proposed the RAW technology to deal with the contention of massive devices. Therefore, solving the contention and scheduling the data for uplink is the critical issue.
The data type of IoT devices can be classified to periodic data and non-periodic data. In non-periodic data, the alarm message is very sensitive to delay time. When the event arrives, massive devices will sent the alarm messages simultaneously and it would cause the severe contention. Furthermore, it would reduce the system performance. So, we propose the new method to reduce the delay time and improving the competitive success rate.
In this paper, we integrate NB-IoT and 802.11ah technology based on LWA architecture. We propose the new method to coordinate of periodic data and non-periodic data to reduce the delay time and improving the system performance. The simulation results also verify the proposed method achieves the above objectives.
關鍵字(中) ★ 窄頻物聯網
★ 802.11ah
★ 限制存取視窗
★ LWA
關鍵字(英) ★ NB-IoT
★ 802.11ah
★ RAW
★ LWA
論文目次
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 X
1. 第一章 緒論 1
1.1. 研究背景 1
1.2. 研究動機與目的 2
1.3. 章節概要 3
2. 第二章 相關研究背景 4
2.1. NB-IoT 基本介紹 4
2.1.1. 核心網路 4
2.1.2. 佈署模式 5
2.1.3. NB-IoT 訊框結構 5
2.1.4. 上行通道與資源區塊結構 6
2.1.5. 下行通道與資源區塊結構 8
2.1.6. 窄頻物理隨機存取通道 9
2.2. 802.11ah 基本介紹 11
2.2.1. 流量指示消息(Traffic Indication Map, TIM) 12
2.2.2. 限制存取視窗(Restricted Access Window, RAW) 13
2.3. LTE-WLAN鏈路聚合(LTE-WLAN Link Aggregation) 13
2.4. 相關文獻 15
3. 第三章 研究方法 20
3.1. 系統架構 20
3.2. 802.11ah檢查訊框 21
3.3. 802.11ah競爭訊框 23
3.4. NB-IoT競爭訊框 27
3.5. 搶奪式與非搶奪式策略 29
4. 第四章 模擬結果與討論 38
4.1. 模擬環境 38
4.2. 模擬結果分析 42
4.2.1. 模擬分流至eNodeB的TIM groups數量對系統的影響 43
4.2.2. 模擬設備數量對系統的影響 58
4.2.3. 模擬競爭門檻值對系統的影響 65
4.2.4. 模擬三種模式的比較 68
5. 第五章 結論 72
6. 參考文獻 73
參考文獻
[1] http://www.2cm.com.tw/technologyshow_content.asp?sn=1610260024, July 3, 2017.
[2] Narrowband Internet of Things Whitepaper, August 2016.
[3] http://www.2cm.com.tw/technologyshow_content.asp?sn=1607200009, July 3, 2017.
[4] Rapeepat Ratasuk, Benny Vejlgaard, Nitin Mangalvedhe, Amitava Ghosh, ”NB-IoT system for M2M communication,” in Wireless Communications and Networking Conference (WCNC), April 2016.
[5] Y.-P. Eric Wang, Xingqin Lin, Ansuman Adhikary, Asbjorn Grovlen, Yutao Sui, Yufei Blankenship, Johan Bergmanm, Hazhir S. Razaghi, ”A Primer on 3GPP Narrowband Internet of Things,” in IEEE Communications Magazine, pp.117-123, March 2017.
[6] Weiping Sun, Munhwan Choi, Sunghyun Choi, ”IEEE 802.11ah: A Long Range 802.11 WLAN at Sub 1 GHz,” in River Journal, May 2013.
[7] Toni Adame, Albert Bel, Boris Bellalta, Jaume Barcelo, Miquel Oliver, ”IEEE 802.11AH: the WiFi approach for M2M communications,” in IEEE Wireless Communications, pp.144-152, December 2014.
[8] Tung-Chun Chang, Chi-Han Lin, Kate Ching-Ju Lin, Wen-Tsuen Chen, ”Load-Balanced Sensor Grouping for IEEE 802.11ah Networks,” in Global Communications Conference (GLOBECOM), December 2015.
[9] http://www.netmanias.com/en/?m=view&id=reports&no=8532, July 3, 2017.
[10] Sarabjot Singh, Shu-ping Yeh, Nageen Himayat, Shilpa Talwar, ”Optimal traffic aggregation in multi-RAT heterogeneous wireless networks,” in Communications Workshops (ICC), May 2016.
[11] Yuan Zhou, Haiguang Wang, Shoukang Zheng, Zander Zhongding Lei, ”Advances in IEEE 802.11ah standardization for machine-type communications in sub-1GHz WLAN,” in Communications Workshops (ICC), June 2013.
[12] Mengxi Dong, Zhanji Wu, Xiang Gao, Huan Zhao, ”An efficient spatial group restricted access window scheme for IEEE 802.11ah networks,” in Information Science and Technology (ICIST), May 2016.
[13] Germán Corrales Madueño, Čedomir Stefanović, Petar Popovski, ”Reliable and Efficient Access for Alarm-Initiated and Regular M2M Traffic in IEEE 802.11ah Systems,” in IEEE Internet of Things Journal, pp.673-682, October 2015.
[14] Sung-Min Oh, JaeSheung Shin, ”An Efficient Small Data Transmission Scheme in the 3GPP NB-IoT System,” in IEEE Communications Letters, pp.660-663, November 2016.
[15] Massimo Condoluci, Mischa Dohler, Giuseppe Araniti, Antonella Molinaro, Joachim Sachs, ”Enhanced Radio Access and Data Transmission Procedures Facilitating Industry-Compliant Machine-Type Communications over LTE-Based 5G Networks,” in IEEE Wireless Communications, pp.56-63, March 2016.
[16] Zaher Dawy, Walid Saad, Arunabha Ghosh, Jeffrey G. Andrews, Elias Yaacoub, ”Toward Massive Machine Type Cellular Communications,” in IEEE Wireless Communications, pp.120-128, November 2016.
[17] Juho Lee, Younsun Kim, Yongjun Kwak, Jianzhong Zhang, Aris Papasakellariou, Thomas Novlan, Chengjun Sun, Yingyang Li, ”LTE-advanced in 3GPP Rel -13/14: an evolution toward 5G,” in IEEE Communications Magazine, pp.36-42, March 2016.
[18] https://en.wikipedia.org/wiki/P-wave, July 3, 2017.
[19] https://en.wikipedia.org/wiki/IEEE_802.11ah, July 3, 2017.
[20] https://en.wikipedia.org/wiki/NarrowBand_IOT, July 3, 2017.
[21] http://www.2cm.com.tw/coverstory_content.asp?sn=1609300029, July 3, 2017.
[22] http://www.2cm.com.tw/markettrend_content.asp?sn=1510070006, July 3, 2017.
[23] http://www.2cm.com.tw/news_print.asp?sn=1607280010, July 3, 2017.
[24] https://en.wikipedia.org/wiki/DCF_Interframe_Space, July 3, 2017.
[25] https://en.wikipedia.org/wiki/Short_Interframe_Space, July 3, 2017.
[26] https://mrncciew.com/2014/10/12/cwap-802-11-medium-contention, July 3, 2017.
指導教授 陳彥文(Yen-Wen Chen) 審核日期 2017-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明