博碩士論文 104524011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.234.0.2
姓名 温采婷(Cai-Ting Wen)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 科學模擬遊戲學習歷程之學習分析
(The Learning Analytics of Scientific Simulation Game)
相關論文
★ 以視覺為主的遊戲空間輔助全身性學習★ 以數位教室環境增進同步遠距教學之臨場感
★ 以行動載具支援並分析合作式的探索活動★ 以混合實境支援工作臺協同探究學習
★ 使用資料探勘輔助學習者探索大型資料庫—學習者經驗之研究★ 以貢獻與聯結為基礎之社會知識創造模型—一個資源與概念合作聯結工具
★ 互動式計算桌面環境對於合作學習的優缺點★ 以共享螢幕及群組軟體支援一對一環境下面對面的合作網路探索
★ 合作學習使用網際網路: 學習腳本在面對面網路合作探索的影響★ 兒童使用超媒體的Web2.0創作故事平台之探究--衍生與重組
★ 以創用為基礎之合作說故事平台 - 衍生、重組、擁有感★ 透過網路實施模擬實務社群並利用即興創作激發創意
★ 使用群組軟體與共同螢幕進行一對一合作網路探索活動★ 以Cyber-Physical環境支援程式設計學習之探究
★ 跨領域合作設計活動之互動分析:群組軟體的支援與設計★ 不同成就學生於模擬遊戲環境中程式學習效果之探究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 模擬遊戲能提升學生的學習動機與對科學學習的態度,通過科學建模能幫助學生用質化或量化的方式預測或解釋模擬的現象,藉此解決模擬遊戲的任務問題,並在過程中轉變或者建立新的科學概念。然而缺乏活動引導將會造成將造成進入門檻過高,無法幫助學生有效透過這樣的方式學習,因此本研究設計引導學生在模擬遊戲中進行科學建模的問題解決學習活動,蒐集25名物理彈性選修課程的高一學生在一次活動中建立的科學模型、學習行為與表現以及對科學的觀點,藉由描述性的內容分析、行為頻率統計,以及監督式與非分監督式序列分析,從多種面向探討學生在活動中的行為表現、行為模式與概念的轉變,揭露學生在模擬遊戲學習活動中的學習歷程。多數學生達到遊戲任務要求,並且在延宕測驗上證實參與模擬遊戲中進行科學建模的學習活動能夠幫助科學概念的形成建立,以及概念的轉變;然部分學生在活動過程中遭遇了困難,透過了解學生在模擬遊戲活動、以及進一步探討學生在遊戲中展現的行為模式,顯示在活動中建立的初始科學模型型態與學生的活動後續表現,以及行為模式有緊密關聯。並且從學生們的行為模式類別中,發現過於依賴教材、低參與度,以及未能結合模擬提供資訊,是導致未能完成遊戲任務的可能原因。對於未來模擬遊戲中進行科學建模的學習活動,本研究也提供一些建議,包含在課堂上,對於初始科學模型建立不順利的學生,給予更多輔導和關心;在活動設計中,透過鷹架設計引導科學模型建立方向,以輔助遭遇困難的學生建立出能夠預測和解釋模擬現象以完成任務的科學模型,藉此轉變概念或建立新的科學概念。
摘要(英) The modeling-based learning with simulation games help students build scientific models in a contextualized environment. However, it’s still difficult for the novice students to learn with the complex simulation games without expert guidance. This study designed a learning activity based on a simulation game to guide students to construct their science models in simulation game. Participants were 25 students who are 10-th grade in a physics class. To understand how they learned in the simulation game, the models the students constructed, their performance and learning activities, as well as their conceptions of learning science and approaches to learning were collected. Content analysis and lag sequential analysis were applied to analyze the data. The result showed that most students were able to build a sound scientific model to solve the problem. Such a result indicates that the simulation game enhanced the students’ understanding of the problem. However, significant number of the students encountered difficulty in such modeling activity. This study thus applied supervised analysis to understand the factors influencing the students’ problem solving outcomes. The result found that whether students were able to link the reference material with the simulation game is a key factor influencing problem solving outcomes. Furthermore, this study applied unsupervised analysis to discover the hidden pattern that can not be seen by supervised analysis. The results reflects that those students simply relied on reference material in modeling activities tended not be able to solve problem through modeling. Therefore, this study suggested that educators need to apply some pedagogical scaffolding, for instance meta-cognitive scaffolding, in future design to guide these students to effectively learn through simulation games.
關鍵字(中) ★ 科學建模
★ 模擬遊戲
★ 行為序列分析
★ 科學學習
★ 電腦模擬
關鍵字(英) ★ Scientific modeling
★ Simulation game
★ Lag sequential analysis
★ Science learning
★ Computer simulation
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與問題 2
1.3 名詞解釋 3
1.3.1 科學模型(Scientific model) 3
1.3.2 科學建模(Scientific modelling) 3
1.3.3 電腦模擬(Computer Simulation) 3
1.3.4 滯後序列分析(Lag Sequential Analysis, LSA) 3
1.4 研究範圍與限制 4
1.5 論文架構 4
第二章 文獻探討 5
2.1 科學建模 5
2.2 科學模擬遊戲 6
2.3 滯後序列分析(Lag Sequential Analysis) 7
第三章 系統設計 10
3.1 系統架構與設計理念 10
3.2 系統介紹 11
3.2.1 電腦物理模擬(科學家) 12
3.2.2 科學學習活動(老師與學生) 13
3.2.3 學習分析(老師與研究者) 16
第四章 研究方法 22
4.1 研究流程 22
4.2 教學活動設計 23
4.3 實驗設計 26
4.4 研究對象 27
4.5 研究工具 27
4.5.1 CoSci平台 28
4.5.2 學習成效評量測驗 28
4.5.3 科學學習觀點問卷 29
4.6 資料蒐集 29
4.6.1 科學模型 30
4.6.2 模擬遊戲活動行為 30
4.6.3 學習表現 31
4.6.4 科學觀點 32
4.6.5 事後訪談 32
4.7 資料分析 32
4.7.1 科學模型 32
4.7.2 學習行為模式 32
4.7.3 學習表現 35
4.7.4 科學觀點 36
第五章 實驗結果與討論 37
5.1 模擬遊戲任務表現 37
5.2 科學建模結果 37
5.2.1 初始科學模型 38
5.2.2 修訂科學模型 39
5.2.3 初始與修正科學模型轉換圖 42
5.3 學習行為模式 44
5.3.1 模擬遊戲活動問題解決行為發生頻率比例分佈 44
5.3.2 模擬遊戲活動中建立科學模型行為發生頻率比例分佈 46
5.3.3 監督式學習行為轉移模式差異 49
5.3.4 非監督式學習行為轉移模式類型 51
5.4 科學學習觀點 60
5.4.1 科學學習的概念問卷(COLS) 60
5.4.2 科學學習的方法問卷(ALS) 62
5.5 事後訪談 64
5.6 學習成效 67
第六章 結論與建議 68
6.1 結論 68
6.2 未來建議 70
參考文獻 72
附錄A 學習成效前測測驗卷 79
附錄B 學習成效後測測驗卷 80
附錄C 延宕測試試卷 81
附錄D 科學學習的概念問卷 82
附錄E 科學學習的方法問卷 85
參考文獻
Anderson, J. L., & Barnett, M. (2013). Learning physics with digital game simulations in middle school science. Journal of Science Education and Technology, 22(6), 914-926.
Annetta, L., Lamb, R., Minogue, J., Folta, E., Holmes, S., Vallett, D., & Cheng, R. (2014). Safe science classrooms: teacher training through serious educational games. Information Sciences, 264, 61-74.
Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis.(pp. 109 ,formula 7.2). Cambridge university press.
Bakeman, R., & Quera, V. (2011). Sequential analysis and observational methods for the behavioral sciences. Cambridge University Press
Barak, M., & Hussein-Farraj, R. (2013). Integrating model-based learning and animations for enhancing students’ understanding of proteins structure and function. Research in Science Education, 43(2), 619-636.
Berland, L. K., Schwarz, C. V., Krist, C., Kenyon, L., Lo, A. S., & Reiser, B. J. (2015). Epistemologies in practice: Making scientific practices meaningful for students. Journal of Research in Science Teaching.
Campbell, T., Oh, P. S., Maughn, M., Kiriazis, N., & Zuwallack, R. (2015). A review of modeling pedagogies: Pedagogical functions, discursive acts, and technology in modeling instruction. Eurasia Journal of Mathematics, Science & Technology Education, 11(1), 159-176.
Carrejo, D. J., & Reinhartz, J. (2014). Facilitating Conceptual Change through Modeling in the Middle School Science Classroom: This Article Examines a Professional Development Program That Helped Teachers Use Models as a Means to Foster Conceptual Change in Eighth Grade Science Students and Deepen Their Understanding about Motion. Middle School Journal, 46(2), 10-19.
Chamizo, J. A. (2013). A new definition of models and modeling in chemistry’s teaching. Science & Education, 1-20.
Chang, C. J., Liu, C. C., & Shen, Y. J. (2012). Are One-to-One Computers Necessary? An Analysis of Collaborative Web Exploration Activities Supported by Shared Displays. Journal of Educational Technology & Society, 15(4).
Chang, C.-J., Liu, C.-C., Wu, Y.-T., Chang, M.-H., Fan Chiang, S.-H., Chiu, B.-C., …Chang, C.-K. (2016, Dec). Students’ Perceptions on Problem Solving with Collaborative Computer Simulation. Chen, W. et al. (Eds.) (2016). Proceedings of the 24th International Conference on Computers in Education. India: Asia-Pacific Society for Computers in Education.
Chen, C. H., Wang, K. C., & Lin, Y. H. (2015). The Comparison of Solitary and Collaborative Modes of Game-based Learning on Students′ Science Learning and Motivation. Educational Technology & Society, 18(2), 237-248.
Chen, C. H., Wu, I. C., & Jen, F. L. (2013). Designing online scaffolds for interactive computer simulation. Interactive Learning Environments, 21(3), 229-243.
Clark, D. B., Sengupta, P., Brady, C. E., Martinez-Garza, M. M., & Killingsworth, S. S. (2015). Disciplinary integration of digital games for science learning. International Journal of STEM Education, 2(1), 2.
de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: the Go-Lab federation of online labs. Smart Learning Environments, 1(1), 3.
DeBoer, G. E. (1991). A History of Ideas in Science Education: Implications for Practice. Teachers College Press, 1234 Amsterdam Avenue, New York, NY 10027.
Donnelly, D. F., Linn, M. C., & Ludvigsen, S. (2014). Impacts and characteristics of computer-based science inquiry learning environments for precollege students. Review of Educational Research, 84(4), 572-608.
Esquembre, F. (2004). Easy Java Simulations: A software tool to create scientific simulations in Java. Computer Physics Communications, 156(2), 199-204.
Furtak, E. M., Ruiz‐Primo, M. A., & Bakeman, R. (2017). Exploring the Utility of Sequential Analysis in Studying Informal Formative Assessment Practices. Educational Measurement: Issues and Practice, 36(1), 28-38.
Gerardi, H. (2017). Using Student Epistemologies of Modeling in Biology to Inform In-Class Teaching Practices.
Hou, H. T. (2015). Integrating cluster and sequential analysis to explore learners’ flow and behavioral patterns in a simulation game with situated-learning context for science courses: A video-based process exploration. Computers in human behavior, 48, 424-435.
Hou, H. T., & Li, M. C. (2014). Evaluating multiple aspects of a digital educational problem-solving-based adventure game. Computers in Human Behavior, 30, 29-38.
Huang, Y. M., Huang, S. H., & Wu, T. T. (2014). Embedding diagnostic mechanisms in a digital game for learning mathematics. Educational Technology Research and Development, 62(2), 187-207.
Hwang, G. J., Sung, H. Y., Hung, C. M., Yang, L. H., & Huang, I. (2013). A knowledge engineering approach to developing educational computer games for improving students′ differentiating knowledge. British journal of educational technology, 44(2), 183-196.
Ianiro, P. M., Lehmann-Willenbrock, N., & Kauffeld, S. (2015). Coaches and clients in action: A sequential analysis of interpersonal coach and client behavior. Journal of Business and Psychology, 30(3), 435.
Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S., & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545-556.
Law, V., & Chen, C. H. (2016). Promoting science learning in game-based learning with question prompts and feedback. Computers & Education, 103, 134-143.
Lazarowitz, R., & Naim, R. (2013). Learning the cell structures with three-dimensional models: students’ achievement by methods, type of school and questions’ cognitive level. Journal of Science Education and Technology, 22(4), 500-508.
Lead States, N. G. S. S. (2013). Next generation science standards: For states, by states
Lin, P. C., Hou, H. T., Wu, S. Y., & Chang, K. E. (2014). Exploring college students′ cognitive processing patterns during a collaborative problem-solving teaching activity integrating Facebook discussion and simulation tools. The Internet and Higher Education, 22, 51-56.
Lin, T. J., Duh, H. B. L., Li, N., Wang, H. Y., & Tsai, C. C. (2013). An investigation of learners′ collaborative knowledge construction performances and behavior patterns in an augmented reality simulation system. Computers & Education, 68, 314-321.
Lisowska, K. M., Olbryt, M., Student, S., Kujawa, K. A., Cortez, A. J., Simek, K., ... & Kupryjańczyk, J. (2016). Unsupervised analysis reveals two molecular subgroups of serous ovarian cancer with distinct gene expression profiles and survival. Journal of cancer research and clinical oncology, 142(6), 1239-1252.
Liu, C. C., Cheng, Y. B., & Huang, C. W. (2011). The effect of simulation games on the learning of computational problem solving. Computers & Education, 57(3), 1907-1918.
Liu, C. C., Fan Chiang, S. H., Chou, C. Y., & Chen, S. Y. (2010). Knowledge exploration with concept association techniques. Online Information Review, 34(5), 786-805.
Liu, C. Y., Wu, C. J., Wong, W. K., Lien, Y. W., & Chao, T. K. (2017). Scientific modeling with mobile devices in high school physics labs. Computers & Education, 105, 44-56.
Lloyd, B. P., Yoder, P. J., Tapp, J., & Staubitz, J. L. (2016). The relative accuracy and interpretability of five sequential analysis methods: A simulation study. Behavior research methods, 48(4), 1482-1491.
Lyoo, C. H., Zanotti-Fregonara, P., Zoghbi, S. S., Liow, J. S., Xu, R., Pike, V. W., ... & Innis, R. B. (2014). Image-derived input function derived from a supervised clustering algorithm: methodology and validation in a clinical protocol using [11C](R)-rolipram. PloS one, 9(2), e89101.
Malmberg, J., Järvelä, S., & Järvenoja, H. (2017). Capturing temporal and sequential patterns of self-, co-, and socially shared regulation in the context of collaborative learning. Contemporary Educational Psychology, 49, 160-174.
Martin, S. R., Chorney, J. M., Cohen, L. L., & Kain, Z. N. (2013). Sequential analysis of mothers’ and fathers’ reassurance and children’s postoperative distress. Journal of pediatric psychology, 38(10), 1121-1129.
Millis, K., Forsyth, C., Butler, H., Wallace, P., Graesser, A., & Halpern, D. (2011). Operation ARIES!: A serious game for teaching scientific inquiry. In Serious games and edutainment applications (pp. 169-195). Springer London.
Mireault, G. C., Crockenberg, S. C., Sparrow, J. E., Cousineau, K., Pettinato, C., & Woodard, K. (2015). Laughing matters: Infant humor in the context of parental affect. Journal of experimental child psychology, 136, 30-41.
Mulder, Y. G., Bollen, L., de Jong, T., & Lazonder, A. W. (2016). Scaffolding learning by modelling: The effects of partially worked‐out models. Journal of research in science teaching, 53(3), 502-523.
National Research Council (2011). Assessing 21st century skills. Washington, DC: National Academies Press.
Olson, G. M., Herbsleb, J. D., & Rueter, H. H. (1994). Characterizing the sequential structure of interactive behaviors through statistical and grammatical techniques. Human-Computer Interaction, 9(4), 427-472.
Pai, N. P., Sharma, J., Shivkumar, S., Pillay, S., Vadnais, C., Joseph, L., ... & Peeling, R. W. (2013). Supervised and unsupervised self-testing for HIV in high-and low-risk populations: a systematic review. PLOS medicine, 10(4), e1001414.
Pereira, J. A. (2016). Scientific modelling, model prescription and the lightness of data.
Quigley, D., Ostwald, J. L., & Sumner, T. (2017, March). Scientific modeling: using learning analytics to examine student practices and classroom variation. In LAK (pp. 329-338).
Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58(1), 136-153. doi: 10.1016/j.compedu.2011.07.017
Schwenker, F., & Trentin, E. (2014). Pattern classification and clustering: A review of partially supervised learning approaches. Pattern Recognition Letters, 37, 4-14.
Serin, O. (2011). The effects of the computer-based instruction on the achievement and problem solving skills of the science and technology students. TOJET: The Turkish Online Journal of Educational Technology, 10(1).
Shen, J., Lei, J., Chang, H. Y., & Namdar, B. (2014). Technology-enhanced, modeling-based instruction (TMBI) in science education. In Handbook of research on educational communications and technology (pp. 529-540). Springer New York.
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337-1370.
Sung, H. Y., & Hwang, G. J. (2017). Facilitating effective digital game-based learning behaviors and learning performances of students based on a collaborative knowledge construction strategy. Interactive Learning Environments, 1-17.
Tsai, M. J., Huang, L. J., Hou, H. T., Hsu, C. Y., & Chiou, G. L. (2016). Visual behavior, flow and achievement in game-based learning. Computers & Education, 98, 115-129.
VanLehn, K. (2013). Model construction as a learning activity: A design space and review. Interactive Learning Environments, 21(4), 371-413.
Wang, J., Guo, D., & Jou, M. (2015). A study on the effects of model-based inquiry pedagogy on students’ inquiry skills in a virtual physics lab. Computers in Human Behavior, 49, 658-669.
Wilkerson, M., Shareff, B., Gravel, B., Shaban, Y., & Laina, V. (2017). Exploring Computational Modeling Environments as Tools to Structure Classroom-Level Knowledge Building. Philadelphia, PA: International Society of the Learning Sciences.
Winsberg, E. (2013). Computer simulations in science.
Wu, H. L., & Pedersen, S. (2011). Integrating computer-and teacher-based scaffolds in science inquiry. Computers & Education, 57(4), 2352-2363.
Wu, S. Y., Chen, S. Y., & Hou, H. T. (2015). A study of users’ reactions to a mixed online discussion model: A lag sequential analysis approach. International Journal of Human-Computer Interaction, 31(3), 180-192.
Wu, S. Y., Chen, S. Y., & Hou, H. T. (2016). Exploring the interactive patterns of concept map-based online discussion: a sequential analysis of users’ operations, cognitive processing, and knowledge construction. Interactive Learning Environments, 24(8), 1778-1794.
Yang, K. H. (2017). Learning behavior and achievement analysis of a digital game-based learning approach integrating mastery learning theory and different feedback models. Interactive Learning Environments, 25(2), 235-248.
Yang, T. C., Chen, S. Y., & Hwang, G. J. (2015). The influences of a two-tier test strategy on student learning: A lag sequential analysis approach. Computers & Education, 82, 366-377.
Zangori, L., Forbes, C., & Schwarz, C. (2015). Exploring the Effect of Embedded Scaffolding Within Curricular Tasks on Third-Grade Students′ Model-Based Explanations about Hydrologic Cycling. Science & Education, 24.
Zeng, L. L., Shen, H., Liu, L., & Hu, D. (2014). Unsupervised classification of major depression using functional connectivity MRI. Human brain mapping, 35(4), 1630-1641.
Zhang, S., Liu, Q., Chen, W., Wang, Q., & Huang, Z. (2017). Interactive networks and social knowledge construction behavioral patterns in primary school teachers′ online collaborative learning activities. Computers & Education, 104, 1-17.
指導教授 劉晨鐘(Chen-Chung Liu) 審核日期 2017-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明