博碩士論文 104621008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:54.234.0.2
姓名 曾昭誠(Zhao-Cheng Zeng)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 利用2016年TASSE實驗期間X-band雷達資料反演及分析雨滴粒徑分布特性
(Analysis and Retrieval of Drop Size Distribution in 2016 Taipei Summer Storm Experiment)
相關論文
★ 賀伯颱風與地形間的交互作用★ 宜蘭地區秋冬季降雨特性之研究
★ 台灣地區午後對流降水特性之分析★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案
★ 利用整合探空系統分析南海北部大氣邊界層特性之研究★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究
★ SCSMEX期間利用C-Pol偏極化雷達氣象參數觀測降水系統之分析★ 利用與滴譜儀分析雨滴粒徑分布:納莉颱風個案
★ 利用都卜勒雷達分析颱風風場結構 - 2001年納莉颱風★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 利用二維雨滴譜儀研究雨滴譜特性
★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雨滴譜儀觀測可以獲得雨滴粒徑分布(DSD)特徵,配合雙偏極化雷達高時空解析度的觀測,使用相關公式即可反演大範圍的DSD參數。以往使用長期統計之DSD特徵作為反演的依據,但DSD的特徵會因時間、空間、降雨類型的不同而改變,故一時一地觀測的DSD特性並不能一體適用在其他地區或時間。了解雨滴粒徑分佈的變化有助於改善反演DSD參數的成效。
  本研究使用2016年9月1日到9月10日,雙北都會區夏季暴雨觀測預報實驗(TASSE)期間,五股的移動式X波段雙偏極化都卜勒雷達(TEAM-R);新店、翡翠水庫撞擊式雨滴譜儀(JWD)的觀測資料進行研究。Gamma形式的雨滴粒徑分布可由形狀參數μ、斜率參數Λ及截距參數N_0描述。偏極化參數可由Gamma參數經散射模擬求出,過程中需使用形狀參數及斜率參數的約束關係。
  本研究中DSD反演所需的μ-Λ關係式使用本次個案9/8~9/10翡翠水庫JWD 統計所得的關係式及利用Brandes在2003年針對對流系統統計的μ-Λ關係式做比較。使用以上兩種關係式以TEAM-R觀測反演對流胞DSD參數的三維結構。另外再加入以JWD計算之DSD參數、JWD使用散射模擬之雷達參數直接擬合的關係式做討論,代入雷達觀測資料可直接求出DSD參數。本研究此用以上三種方法討論反演DSD參數的成效,評估後兩種使用μ-Λ關係式所得的反演結果較佳。
  本研究探討2016 TASSE實驗中九月九日觀測到的對流胞,反演後得到對流胞的DSD三維結構能有效的提供對流發展時的雲微物理資訊。在對流初生時觀察到較窄的雨滴粒徑分布及較小的雨滴、較低的雨滴濃度;對流成熟時觀察到較寬的粒徑分布及較大的雨滴,雨滴濃度則比對流初生期高數百至數千倍;在層狀降雨時觀察到偏窄的雨滴粒徑分布、與較低的雨滴濃度,雨滴大小則介於對流初生期及對流成熟期之間。兩方法得到雲物理特徵十分一致,證實雨滴譜儀與偏極化雷達能有效的反演DSD的結構相當符合雲物理機制。
摘要(英)
Polarimetric radar system provide high temporal and high-spatial resolution data and disdrometers can show the characteristic of Drop Size Distribution (DSD). Base on the information of disdrometer data, dual Polarimetric Radar data can be used to retrieve the parameters of DSD. The DSD varies from case to case or even in the different periods of a case. Therefore, understanding the variety of DSD is helpful to improve the accuracy of DSD parameters retrieved by radar.

  The data of Taiwan Experimental Atmospheric Mobile Radar (TEAM-R) and Impact Disdrometer (JWD) observations collected in Taipei Summer Storm Experiment (TASSE) during early September of 2016 was used. From the disdrometer data, the three Gamma distribution parameters including the intercept N_0, the shape (μ) and rate (Λ) parameters can be calculated through moment method. Through the scattering calculation the relations between polarimetric variables and gamma distribution parameters can be derived. The constrain relation between the shape (μ) and rate (Λ) parameters is necessary to retrieve the three Gamma distribution parameters from polarmetric variables Z_DR and K_dp. In this study, two constrain relations were applied: first one is the well known relation proposed by Brandes et al, , the second one is from the statistics during the three days disdrometer observation of thunderstorms in TASSE. The retrieved three dimensional distribution of DSD are compared between these two retrieval applications. A third approach is directly fitting the DSD Gamma parameters with the polarimetric variables to retrieve three Gamma parameters from fitting functions. Because the limitation of very large drop in disdrometer, the third method is not be able to retrieve reasonable DSD at large Z_DR situation.
The retrieved three dimensional DSDs in different stages of thunderstorm reveal very bounty microphysical information. The relatively smaller concentration and drop diameter were found in the initiation stage, while the deep convection was developed one to two order of magnitude of concentration were found through the convective core. More cases studies and much longer statistics and validation should be conducted in the near future.
關鍵字(中) ★ 雨滴粒徑分布
★ 雙偏極化雷達
關鍵字(英) ★ Drop Size Distribution
★ Polarimetric radar
論文目次
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
一、 緒論 1
1-1前言 1
1-2文獻回顧 1
1.3研究方向 3
二、 資料來源 4
2-1觀測實驗介紹 4
2.2個案介紹 4
2.3觀測儀器介紹 5
三、 資料處理 6
3-1 參數介紹 6
3-1-1 雨滴粒徑分布的計算 6
3-1-2 Gamma DSD 參數介紹 6
3-1-3 偏極化參數介紹 9
3-2 資料品管 10
3-2-1 撞擊式雨滴譜儀(JWD) 10
3-2-2 TEAMR雙偏極化雷達 10
四、 DSD反演方法討論 14
4-1 使用Zh,Zdr,Kdp與μ-Λ關係式反推雨滴粒徑分布 14
4-2 DSD反演方法比較 15
五、 對流個案討論 19
5-1對流初生期 20
5-2對流成熟期 21
5-3層狀降雨 23
5-4 小結 24
六、 結論與未來展望 26
6-1 結論 26
6-2 未來展望 28
七、 參考文獻 29
附表 31
附圖 32
參考文獻
張偉裕, 2002: 利用雨滴譜儀分析雨滴粒徑分佈(納莉颱風個案), 國立中央大學碩士論文
劉慈先, 2002: SCSMEX 期間利用 C-Pol 偏極化雷達氣象參數觀測降水系統之分析, 國立中央大學碩士論文
林位總, 2004: 利用二維雨滴譜儀研究雨滴譜特性, 國立中央大學碩士論文
紀博庭,2005「利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究」,國立中央大學碩士論文
呂崇華, 2006: 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性,國立中央大學碩士論文
簡巧菱,2006:「台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性」,國立中央大學碩士論文
吳舜華,2006:「利用雨滴譜儀分析不同降水系統之為物理特徵研究」,國立中央大學碩士論文
毛又玉,2007:「台灣北部地區層狀與對流降水的雨滴粒徑分布特性」,國立中央大學碩士論文
廖信豪,2009: 利用 SoWMEX/TiMREX 實驗期間 X-band 雷達資料估計降雨,國立中央大學大氣物理研究所碩士論文
陳奕如,2009:「SoWMEX 實驗期間雨滴粒徑分佈特性之研究」
陳姿瑾,2009:「西南氣流實驗之雨滴譜分析研究」
蔣育真,2010:「2009 年台灣梅雨季雨滴粒徑分佈特性之比較研究」,國立中央大學碩士論文
黃沛瑜, 2012:使用多部都卜勒/偏極化雷達分析凡那比颱風(2010)的眼牆重建過程。國立中央大學碩士論文
盧又嘉,2012:「颱風侵台期間雨滴粒徑之觀測研究」,國立中央大學碩士論文
陳盈臻,2013:「台灣北部鋒面強降水個案之雨滴粒徑觀測比較研究」,國立中央大學碩士論文
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An Evaluation of a Drop Distribution–Based Polarimetric Radar Rainfall Estimator. Journal of Applied Meteorology, 42, 652-660.
Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An Examination of Propagation Effects in Rainfall on Radar Measurements at Microwave Frequencies. Journal of Atmospheric and Oceanic Technology, 7, 829-840.
Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop Size Distribution in Different Climatic Regimes from Disdrometer and Dual-Polarized Radar Analysis. Journal of the Atmospheric Sciences, 60, 354-365.
Chang, W.-Y., T.-C. C. Wang, and P.-L. Lin, 2009: Characteristics of the Raindrop Size Distribution and Drop Shape Relation in Typhoon Systems in the Western Pacific from the 2D Video Disdrometer and NCU C-Band Polarimetric Radar. Journal of Atmospheric and Oceanic Technology, 26, 1973-1993.
Gorgucci, E., G. Scarchilli, and V. Chandrasekar, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Transactions on Geoscience and Remote Sensing, 37, 269-276.
Kozu, T., and K. Nakamura, 1991: Rainfall Parameter Estimation from Dual-Radar Measurements Combining Reflectivity Profile and Path-integrated Attenuation. Journal of Atmospheric and Oceanic Technology, 8, 259-270.
Marshall, J. S., and W. M. K. Palmer, 1948: THE DISTRIBUTION OF RAINDROPS WITH SIZE. Journal of Meteorology, 5, 165-166.
Sauvageot, H., and J.-P. Lacaux, 1995: The Shape of Averaged Drop Size Distributions. Journal of the Atmospheric Sciences, 52, 1070-1083.
Seliga, T. A., and V. N. Bringi, 1976: Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations for Measuring Precipitation. Journal of Applied Meteorology, 15, 69-76.
——, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Science, 13, 271-275.
Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The Concept of “Normalized” Distribution to Describe Raindrop Spectra: A Tool for Cloud Physics and Cloud Remote Sensing. Journal of Applied Meteorology, 40, 1118-1140.
Ulbrich, C. W., 1983: Natural Variations in the Analytical Form of the Raindrop Size Distribution. Journal of Climate and Applied Meteorology, 22, 1764-1775.
Vivekanandan, J., G. Zhang, S. M. Ellis, D. Rajopadhyaya, and S. K. Avery, 2003: Radar reflectivity calibration using differential propagation phase measurement. Radio Science, 38, n/a-n/a.
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Transactions on Geoscience and Remote Sensing, 39, 830-841.
指導教授 林沛練、陳台琦(Pay-Liam Lin Tai-Chi Chen Wang) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明