博碩士論文 104621013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.84.139.101
姓名 蘇胤瑞(Yin-Ruei Su)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 颱風渦旋初始化對全球模式MPAS模擬之影響
(MPAS Typhoon Prediction with Dynamic Vortex Initialization)
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 模式的初始場對於颱風的預報扮演著關鍵的角色。本研究利用模式動力上調整颱風的渦旋透過全球模式(Model for Prediction Across Scales-Atmosphere , MPAS-A)的1小時來回積分而產生虛擬渦旋,同時將氣象變數重新移位到初始位置上,當渦旋的強度達到與最佳路徑的強度一致,或是達到給定循環的次數就停止來回積分的動作,而後再進行預報。
本篇研究使用的60-15公里的可變解析度,15公里是涵蓋整個西北太平洋及大部分的亞洲,三組實驗是建構在不同的模式初始場,分別是NCEP FNL 1度(CTRL)、0.25度(CTRH)以及0.25度搭配的渦旋初始化方案(NT),探討2015年蘇迪勒(Soudelor)、杜鵑颱風(Dujuan)及2016年尼伯特(Nepartak)、梅姬(Megi)颱風,不同初始場對颱風模擬的影響。
在spinup的過程我們發現蘇迪勒颱風的渦旋結構從NCEP全球分析場進來後,大約進行40至80個循環,颱風眼牆結構有逐漸改善並且更有組織性。此外,蘇迪勒個案中,在預報前期,颱風的垂直結構NT實驗發展的最好,從垂直結構的相對濕度、位溫及水平風速來看,有移植動力結構的渦旋,相對濕度明顯的偏高、暖心結構有加深,且增溫的狀態以及整層水平風速較強且呈現更為對稱的情形,使得颱風的強度與觀測最為接近。而路徑方面,蘇迪勒、尼伯特及梅姬颱風的NT實驗在預報前期的路徑有改善,而杜鵑颱風則是在預報中期以前有明顯改善。此外,蘇迪勒颱風在NT模擬的雨量,出現與觀測相似的兩個極端降雨分布,但是東北側的極端值是略微偏南,而定量降水校驗的部分,NT實驗在較弱的降水門檻(50mm/24hr)以及極端降水的門檻(800mm/24hr),公正預兆得分、偏倚得分及偵測率是比其他實驗來的好一些,但其餘的降水門檻則是CTRH分數來的好。再看到降雨的空間相關係數,在不同時間的累積雨量,CTRH是比其他實驗來的好一些,但是整體而言,三組實驗的空間相關性都很接近且是不錯的,都有0.5以上。
目前4個個案研究中,我們發現在72小時預報期間,NT的平均路徑誤差大部份是優於其他實驗組,而平均最低氣壓及最大風速的誤差,NT實驗幾乎是最小的,明顯優於其他實驗組,這也顯示出模式初始動力上的虛擬渦旋在MPAS高解析度的預報是有正面的影響,特別是颱風強度與結構。
摘要(英)
The initial condition of a model plays an important role in typhoon forecasts. In this study, the initial typhoon vortex is replaced by a dynamically adjusted typhoon vortex, which is derived from cycling runs of one-hour MPAS model integration. In this study, the MPAS variable-resolution of 60-15 km is used, and the region with 15-km resolution covers the East Asia and North Western Pacific. Three experiments are conducted for each typhoon case, i.e., Typhoon Soudelor (2015), Dujuan (2015), Nepartak (2016) and Megi (2016). All of the initial conditions come from National Centers for Environmental Prediction (NCEP) Final (FNL) analysis but in different resolutions, i.e., 1 degree (CTRL), 0.25 degree (CTRH), and cycling runs with resolution of 0.25 degree (NT).

After about 40-80 cycles for typhoon Soudelor, the typhoon structure is greatly improved than the NCEP global analysis by providing a more organized eyewall. The results show that NT has improvements in early track predictions for typhoons Soudelor, Nepatak and Megi, but in the later simulation for typhoon Dujuan. The NT run for typhoon Soudelor obtains a consistent rainfall pattern with a double-peak precipitation, which in a better agreement with the observation compared to the no-bogussing run, even though the extreme at the northeast side is slightly southward. For the rainfall verification, NT shows better score with extreme (smaller and larger) thresholds in equitable threat score, bias score and probability of detection, but the CTRH has higher score in the middle thresholds. As for spatial correlation coefficient, the accumulated rainfall in different periods is better for CTRH. In general, all the spatial correlation coefficients are very similar and more than 0.5. Generally speaking, NT has the best simulation in the 72-h mean track error, minimum pressure, and maximum wind speed. Therefore, the dynamically adjusted vortex has a positive impact on the typhoon simulations, especially in the intensity and structure.
關鍵字(中) ★ 渦旋初始化 關鍵字(英) ★ Vortex Initialization
論文目次
中文摘要 ………………………………………………………………I
英文摘要 ………………………………………………………………III
致謝 ………………………………………………………………V
目錄 ………………………………………………………………VII
表目錄 ………………………………………………………………VIII
圖目錄 ………………………………………………………………IX
第一章 緒論…………………………………………………………1
1-1 前言…………………………………………………………1
1-2 文獻回顧……………………………………………………1
1-3 研究動機與目的……………………………………………3
第二章 資料來源及研究方法………………………………………5
2-1 資料來源……………………………………………………5
2-2 研究方法……………………………………………………5
2-2-1 模式介紹……………………………………………………5
2-2-2 NC2011………………………………………………………6
2-2-3 渦旋植入法…………………………………………………7
2-2-4 降雨預報校驗指數…………………………………………8
第三章 模式設定、個案介紹及實驗設計…………………………10
3-1 模式設定……………………………………………………10
3-2 個案介紹……………………………………………………10
3-3 實驗設計……………………………………………………13
第四章 不同初始場模擬的結果……………………………………14
4-1 蘇迪勒颱風…………………………………………………14
4-2 杜鵑颱風……………………………………………………23
4-3 尼伯特颱風…………………………………………………24
4-4 梅姬颱風……………………………………………………25
第五章 結論與未來工作……………………………………………27
5-1 結論…………………………………………………………27
5-2 未來工作……………………………………………………29
參考文獻 ………………………………………………………………30
附表與圖 ………………………………………………………………33
參考文獻
陳舒雅,2008:GPS 掩星觀測資料同化及對區域天氣預報模擬之影響。國立中央大學,大氣物理研究所,博士論文,1-153。
陳致穎,2014:颱風渦旋初始化與資料同化對於颱風預報的影響。國立中央大學,大氣科學學系,博士論文,1-107。
黃子茂,2012:同化虛擬位渦反演渦旋對颱風凡那比颱風初始場分析及預報之影響。國立中央大學大氣物理研究所碩士論文,1-59。
董承錡,2016:同化GPS RO資料之初始場對於MPAS颱風模擬的影響。國立中央大學大氣物理研究所碩士論文,1-65。
江秉儒,2016:利用以GSI-3DVAR為基礎系集變分混合同化系統探討GPS掩星觀測對熱帶氣旋模擬之影響。國立中央大學大氣物理研究所碩士論文,1-60。
Bender, M. A., R. J. Ross, R. E. Tuleya, and Y. Kurihara, 1993: Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System. Mon. Wea. Rev., 121, 2046-2061.
Chen, C.-Y., Y.-L. Chen, and H. V. Nguyen, 2014: The spin-up process of a cyclone vortex in a tropical cyclone initialization scheme and its impact on the initial TC structure. SOLA, 10, 93–97.
Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, Y.-R. Guo, and S. Sokolovskiy, 2009: Assimilation of GPS refractivity from FORMOSAT-3/COSMIC using a nonlocal operator with WRF 3DVAR and its impact on the prediction of a typhoon event. Terr. Atmos. Ocean. Sci., 20, 133–154.
Davis, C., A., D. A. Ahijevych, W. Wang, and W. C. Skamarock, 2016: Evaluating medium-range tropical cyclone forecasts in uniform- and variable-resolution global models. Mon. Wea. Rev., 144, 4141-4160.
Davis, C. A., and S. Low-Nam, 2001: The NCAR-AFWA tropical cyclone bogussing scheme. Air Force Weather Agency (AFWA) Rep., 12 pp.
Hagos, S., R. Leung, S. A. Rauscher, and T. Ringler, 2013: Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Mon. Wea. Rev., 141, 3022– 3036.
Heinzeller, D., M.G. Duda, and H. Kunstmann, 2016: Towards convection-resolving, global atmospheric simulations with the Model for Prediction Across Scales (MPAS) v3.1: an extreme scaling experiment. Geosci. Model Dev., 9, 77-110.
Hsiao, L.-F., C. S. Liou, T. C. Yeh, Y. R. Guo, D. S. Chen, K. N. Huang, C. T. Terng, and J. H. Chen, 2010: A vortex relocation scheme for tropical cyclone initialization in Advanced Research WRF. Mon. Wea. Rev., 138, 3298–3315.
Huang, C.-Y., Y.-H. Kuo, S.-H. Chen, and F. Vandenberghe, 2005: Improvements on typhoon forecasts with assimilated GPS occultation refractivity. Wea. Forecasting, 20, 931–953.
Kurihara, Y., M. A. Bender, and R. J. Ross, 1993: An initialization scheme of hurricane models by vortex specification. Mon. Wea. Rev., 121, 2030–2045.
¬¬——, M. A. Bender, R. E. Tuleya, and R. J. Ross, 1995: Improvements in the GFDL hurricane prediction system. Mon. Wea. Rev., 123, 2791–2801.
Park, S.-H, W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case., Mon. Wea. Rev., 141,3116-3129.
Park, S.-H., J. B. Klemp and W. C. Skamarock, 2014: A Comparison of Mesh Refinement in the Global MPAS-A and WRF Models Using an Idealized Normal-Mode Baroclinic Wave Simulation. Park, Mon. Wea. Rev., 142, 3614-3634.
Pu, Z-X., and S. A. Braun, 2001: Evaluation of bogus vortex techniques with four-dimensional variational data assimilation. Mon. Wea. Rev., 129, 2023–2039.
Rauscher, S. A., T. D. Ringler, W. C. Skamarock, and A. A. Mirin 2013: Exploring a global multiresolution modeling approach using aquaplanet simulations. J.
Climate, 26, 2432–2452.
Rauscher, S. A., & Ringler, T. D.2014: Impact of Variable-Resolution Meshes on Midlatitude Baroclinic Eddies Using CAM-MPAS-A., Mon. Wea. Rev, 142(11), 4256–4268.
Sandbach, S., J. Thuburn, D. Vassilev, and M. G. Duda, 2015: A Semi-Implicit Version of the MPAS-Atmosphere Dynamical Core. Mon. Wea. Rev., 143, 3838–3855.
Skamarock, W. C., J. B. Klemp, M. G. Duda, L. D. Fowler, S.-H. Park, and T. D. Ringler, 2012: A multiscale nonhydrostatic atmospheric model using Centroidal Voronoi tessellations and C-grid staggering. Mon. Wea. Rev., 140, 3090–3105.
Nguyen, H. V., and Y.-L. Chen, 2011: High-resolution initialization and simulations of Typhoon Morakot (2009). Mon. Wea. Rev., 139,1463–1491.
Nguyen, H. V., and Y.-L. Chen, 2014: Improvements to a Tropical Cyclone Initialization Scheme and Impacts on Forecasts. Mon. Wea. Rev., 142, 4340-4356.
Wu, C-C., K-H. Chou, Y. Wang, and Y-H. Kuo, 2006: Tropical cyclone initialization and prediction based on four-dimensional variational data assimilation. J. Atmos. Sci., 63, 2383–2395.
Xiao, Q., X. Zou, and B. Wang, 2000: Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Mon. Wea. Rev., 128, 2252–2269.
Zou, X., and Q. Xiao, 2000: Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. J. Atmos. Sci, 57, 836–860.
指導教授 黃清勇(Ching-Yuang Huang) 審核日期 2017-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明