博碩士論文 104621015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:54.224.91.58
姓名 洪若雅(Ruo-Ya Hung)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 臺灣大氣背景PM2.5質量濃度之推估
(Estimation of background PM2.5 concentration in Taiwan)
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 2001年東亞硫沉降之模擬
★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用★ 鹿林山與中壢氣膠光學垂直特性之監測與比較
★ 北台灣冬季層狀雲化學特性分析★ 鹿林山空氣品質背景監測站之背景值分析
★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大氣背景值之定義為局地自然源、外來自然源與背景測站偶受之少量外來人為污染物貢獻量之總和,即人為活動無法改變之污染物濃度,透過大氣背景值之推估方能定量來自當地污染或長程傳輸之貢獻。自然存在之氣體背景值常使用背景站之直接觀測分析,然而臺灣位處東亞中心且人口稠密,無法找到嚴格定義之地面背景測站,且PM2.5易受天氣與其他環境因素影響,導致臺灣PM2.5之大氣背景值不易估量。本篇研究嘗試定量臺灣大氣背景PM¬2.5濃度,以應用於區分其他來源之貢獻。本研究使用2005年冬季至2016年秋季臺灣之萬里、臺東與恆春等背景測站資料,應用調整之AGAGE (Advanced Global Atmospheric Gases Experiment) 方法標記屬大氣背景情境之資料以求得大氣背景值。除AGAGE方法外,另使用隱馬可夫模式(Hidden Markov Model, HMM)分析PM2.5觀測資料作為比對參考,以求得更客觀之定量結果,並與過往文獻相互驗證。
  研究結果顯示使用調整之AGAGE方法求得臺灣地面之大氣背景PM2.5質量濃度約為4.4 μg m-3,與HMM及過往文獻之結果相近。使用標記為背景情境之資料與氣象參數進行相關性分析可發現相關係數低(r < 0.1),且具高可信度,顯示此大氣背景值非因單一氣象參數影響所導致之低值。分析影響大氣背景值之潛在因素可發現其主因為季節變化,可造成背景值約50 %之變化量,降水與日夜變化造成之差異則約10 %。透過趨勢分析之結果可發現近11年背景PM2.5之下降率約為0.1 – 0.2 μg m-3 yr-1,與文獻記載東亞地區PM2.5前驅物同樣呈現下降趨勢,顯示背景值變化趨勢可能與大環境之趨勢變化有關,或是背景值仍然不可避免受到外來源影響。
  基於前述之大氣背景值,本篇研究更進一步探討臺灣本地PM2.5之污染特性,假設臺灣三個背景測站(萬里、臺東與恆春)之PM2.5小時濃度均小於平均大氣背景值(4.4 μg m-3)時,可視作當時不受境外污染物影響之情境,此情境下之PM2.5質量濃度自北而南逐漸增加、平均值約5 – 35 μg m-3。相比於平均大氣背景值,最大變化率發生於高屏地區,該區人為活動造成之PM2.5排放、地形與天氣系統之潛在效應可使其增為背景值之5倍。透過東北、西南風情境分析之分析結果,可發現不同季風盛行條件下,跨縣市傳送量約5 μg m-3。由情境假設結果顯示,假設PM2.5排放量不變、且不受境外污染物影響下,非因當地污染導致之PM2.5貢獻量約為10 μg m-3(即背景值與跨縣市傳送量之總和),其中,大氣背景值即為潛在之PM2.5減排極限,未來考量相關政策修訂或定義高污染事件時,或可將此貢獻量納入考量,以制定合理並且可達成之環保規範。
摘要(英)
The definition of background air quality (AQ) concentration is the sum of local natural emissions, foreign natural and trace anthropogenic pollutants advected into an area. In other words, those AQ level cannot be affected by local anthropogenic activities. Through the estimation of background level of AQ concentration, one can quantify the contributions originate from other sources (e.g. local emission or long-range transport). In the literatures, background concentration of gas pollutants is often obtained by direct observations at natural background sites. However, Taiwan is located in the center of East Asia and populated region. It is scarce to find a standard background site that meets the strict limitations. To quantify the background PM2.5 concentration in Taiwan seems to be even difficult due to PM2.5 concentration strongly varied with weather, long range transport, chemical reactions, and so on.
In this study, we attempt to quantify PM2.5 background concentration level in Taiwan by using 11-year PM2.5 monitoring data obtained from EPA air quality stations in Wanli, Taitung and Hengchun. These sites are chosen as background sites since there are no large PM2.5 emission source adjacently. Modified AGAGE (Advanced Global Atmospheric Gases Experiment) method is used to flag the background condition for calculating PM2.5 background concentration level. In addition to the modified AGAGE method, the HMM (Hidden Markov Model) statistical method and literature reviews are also performed in this study to confirm the reliability of background PM¬2.5 concentrations.
The results show that the PM2.5 background concentration in Taiwan is about 4.4 μg m-3. Low correlation coefficients (r < 0.1) with at least 95 % significant level between background-flagged data and meteorological parameters indicates that the low concentration of background value is weakly related to the influences resulting from meteorological condition. The main factor of affecting background concentration is seasonal variation. It could result in a change in background value of around 50 %. Precipitation and diurnal pattern could contribute for 10 % variation of background PM2.5 value. According to the linear trend analysis, it shows that the decreasing trend of background concentration is -0.1 to -0.2 μg m-3 yr-1 in the past 11 years in corresponding to the decreasing trend of air pollution emissions in East Asia in recent years. This study suggested that the background trend may be related to the trend of surrounding environment or the influences caused by Asian continental sources.
Based on the result of background PM2.5 concentration level, we attempt to further investigate the local PM2.5 characteristics in Taiwan. Assuming that when all of hourly PM2.5 concentration measured at background sites (i.e., Wanli, Taitung and Hengchun) less than averaged background PM2.5 concentration (i.e., 4.4 μg m-3), the situation could be considered as no influence of long-range transport. Under this scenario, the PM2.5 concentrations gradually increase from North to South, and averaged PM2.5 concentrations are 5 – 35 μg m-3 due to local emission and topographic effect. The highest increment appears happened at Southwestern region, and it could be 5 times larger than background concentration level. Following the aforementioned dataset, we further analyze the PM2.5 spatial distribution under Northeast wind and Southwest wind, respectively. We found that the transport amount of PM2.5 across counties could reach 5 μg m-3 and it shows the accumulation effect at specific sites. Results of scenario assumptions show that there are about 10 μg m-3 of PM2.5 due to non-local pollutions (i.e., sum of background value and transported PM2.5 across counties). The 10 μg m-3 represents the lower bound of PM2.5 reduction limit as current emission condition. The results from this study provide a useful information to policy makers on making an achievable and reasonable PM2.5 deduction goal.
關鍵字(中) ★ 大氣背景值
★ PM2.5
關鍵字(英) ★ background concentration
★ PM2.5
論文目次
摘要 i
ABSTRACT iii
誌謝 v
目 錄 vi
圖目錄 viii
一、前言 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 3
2-1東亞地區PM2.5研究回顧 3
2-2大氣背景值 7
2-2-1 定義 7
2-2-2分析方法 8
三、研究方法 11
3-1 臺灣背景測站與PM2.5監測 11
3-2 PM2.5大氣背景值之推估 17
3-3 大氣背景趨勢變化分析 22
3-4 後推軌跡聚類分析 23
3-5 巴恩斯內插法 24
四、結果與討論 25
4-1 環保署空品測站PM2.5長期資料分析 25
4-2 大氣背景值之推估 34
4-3 影響大氣背景PM2.5之潛在因素分析 40
4-4 大氣背景PM2.5長期趨勢變化 45
4-5大氣背景值之應用-本地PM2.5污染特性分析 49
五、總結與未來展望 62
5-1 總結 62
5-2 未來展望 64
參考文獻 65
參考文獻
行政院環境保護署,2017:空氣品質監測網監測儀器。http://taqm.epa.gov.tw/taqm/tw/
b0102-3.aspx (取用日期:2017.06)。
林家慶,2008:鹿林山空氣品質背景監測站之背景值分析。國立中央大學大氣科學研究所碩士論文。國立中央大學。
林能暉、蔡錫祺、王家麟、李崇德、許桂榮、王聖翔、蕭大智、彭啟明、張志忠、莊銘棟、歐陽長風,2016:鹿林山與偏遠離島背景測站國際合作科技研究及操作維護期末報告。行政院環境保護署。
臺灣環保署,2016:中華民國臺灣地區空氣品質監測報告105年年報。行政院環境保護署。
顧正偉,2004:利用多觀察值型隱馬可夫模型進行人體動作辨識。國立交通大學資訊工程研究所碩士論文。國立交通大學。
Atkinson, R., S. Kang, H. Anderson, I. Mills, and H. Walton (2014), Epidemiological time series studies of PM2. 5 and daily mortality and hospital admissions: a systematic review and meta-analysis, Thorax, thoraxjnl-2013-204492.
Barnes, S. L. (1964), A technique for maximizing details in numerical weather map analysis, Journal of Applied Meteorology, 3(4), 396-409.
Chen, J. P., C. E. Yang, and I. C. Tsai (2015), Estimation of foreign versus domestic contributions to Taiwan′s air pollution, Atmos. Environ., 112, 9-19.
Chen, T. F., K. H. Chang, and C. Y. Tsai (2014), Modeling direct and indirect effect of long range transport on atmospheric PM 2.5 levels, Atmos. Environ., 89, 1-9.
Cheng, Z., S. Wang, J. Jiang, Q. Fu, C. Chen, B. Xu, J. Yu, X. Fu, and J. Hao (2013), Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China, Environmental Pollution, 182, 101-110.
Chu, H.-J., H.-L. Yu, and Y.-M. Kuo (2012), Identifying spatial mixture distributions of PM2. 5 and PM10 in Taiwan during and after a dust storm, Atmos. Environ., 54, 728-737.
Chueinta, W., and P. Hopke (2001), Beta gauge for aerosol mass measurement, Aerosol Science & Technology, 35(4), 840-843.
Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock (2008), Accelerated decline in the Arctic sea ice cover, Geophysical research letters, 35(1).
Dawson, J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2009), Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology, Journal of Geophysical Research: Atmospheres, 114(D5).
Dimitriou, K., and P. Kassomenos (2014), Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring, Theor. Appl. Climatol., 116(3-4), 413-433.
Ding, A., C. Fu, X. Yang, J. Sun, T. Petäjä, V.-M. Kerminen, T. Wang, Y. Xie, E. Herrmann, and L. Zheng (2013), Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China, Atmos. Chem. Phys., 13(20), 10545-10554.
Dockery, D. W. (2001), Epidemiologic evidence of cardiovascular effects of particulate air pollution, Environmental health perspectives, 109(Suppl 4), 483.
EPA, U.S. (1996), Air Quality Criteria for Particulate Matter, National Center for Environmental Assessment - RTP office, Office of Research and Development.
EPA, U.S. (2004), Air Quality Criteria for Particulate Matter (Final Report, 2004), National Center for Environmental Assessment - RTP office, Office of Research and Development.
Ghahramani, Z. (2001), An introduction to hidden Markov models and Bayesian networks, International journal of pattern recognition and artificial intelligence, 15(01), 9-42.
Gómez-Losada, Á., J. C. M. Pires, and R. Pino-Mejías (2016), Characterization of background air pollution exposure in urban environments using a metric based on Hidden Markov Models, Atmos. Environ., 127, 255-261.
Greally, B., A. Manning, S. Reimann, A. McCulloch, J. Huang, B. Dunse, P. Simmonds, R. Prinn, P. Fraser, and D. Cunnold (2007), Observations of 1, 1‐difluoroethane (HFC‐152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates, Journal of Geophysical Research: Atmospheres, 112(D6).
Gugamsetty, B., H. Wei, C.-N. Liu, A. Awasthi, S.-C. Hsu, C.-J. Tsai, G.-D. Roam, Y.-C. Wu, and C.-F. Chen (2012), Source characterization and apportionment of PM10, PM2. 5 and PM0. 1 by using positive matrix factorization, Aerosol Air Qual. Res, 12, 476-491.
Haywood, J., and O. Boucher (2000), Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Reviews of geophysics, 38(4), 513-543.
Ho, K. F., S. C. Lee, C. K. Chan, J. C. Yu, J. C. Chow, and X. H. Yao (2003), Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong, Atmos. Environ., 37(1), 31-39.
Hsu, C. H., and F. Y. Cheng (2016), Classification of weather patterns to study the influence of meteorological characteristics on PM2.5 concentrations in Yunlin County, Taiwan, Atmos. Environ., 144, 397-408.
Hueglin, C., R. Gehrig, U. Baltensperger, M. Gysel, C. Monn, and H. Vonmont (2005), Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland, Atmos. Environ., 39(4), 637-651.
Husar, R. B. (1974), Atmospheric particulate mass monitoring with a β radiation detector, Atmospheric Environment (1967), 8(2), 183-188.
Ibe, O. C. (2013), 14 - Hidden Markov Models, in Markov Processes for Stochastic Modeling (Second Edition), edited, pp. 417-451, Elsevier, Oxford.
Itahashi, S., I. Uno, K. Yumimoto, H. Irie, K. Osada, K. Ogata, H. Fukushima, Z. Wang, and T. Ohara (2012), Interannual variation in the fine-mode MODIS aerosol optical depth and its relationship to the changes in sulfur dioxide emissions in China between 2000 and 2010, Atmos. Chem. Phys., 12(5), 2631-2640.
IUPAC (2007), Compendium of Chemical Terminology (Gold book), IUPAC.
Jacob, D. J., and D. A. Winner (2009), Effect of climate change on air quality, Atmos. Environ., 43(1), 51-63.
Jia, B., Y. Wang, Y. Yao, and Y. Xie (2015), A new indicator on the impact of large-scale circulation on wintertime particulate matter pollution over China, Atmos. Chem. Phys., 15(20), 11919-11929.
Juda-Rezler, K., M. Reizer, and J.-P. Oudinet (2011), Determination and analysis of PM 10 source apportionment during episodes of air pollution in Central Eastern European urban areas: the case of wintertime 2006, Atmos. Environ., 45(36), 6557-6566.
Kiehl, J., and B. Briegleb (1993), The relative roles of sulfate aerosols and greenhouse gases in climate forcing, Science, 260(5106), 311-314.
Kong, Q.-Q. (2015), Open source HMM toolbox, with discrete-HMM, Gaussian-HMM, GMM-HMM (matlab), [online] Available at: https://github.com/qiuqiangkong/
matlab-hmm [Accessed 2017/04].
Lave, L. B., and E. P. Seskin (1973), An analysis of the association between US mortality and air pollution, Journal of the American Statistical Association, 68(342), 284-290.
Li, C., Q. Zhang, N. A. Krotkov, D. G. Streets, K. He, S. C. Tsay, and J. F. Gleason (2010), Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument, Geophysical Research Letters, 37(8).
Li, T.-C., C.-S. Yuan, H.-C. Huang, C.-L. Lee, S.-P. Wu, and C. Tong (2017), Clustered long-range transport routes and potential sources of PM2.5 and their chemical characteristics around the Taiwan Strait, Atmos. Environ., 148, 152-166.
Lin, N.-H., S.-C. Tsay, H. B. Maring, M.-C. Yen, G.-R. Sheu, S.-H. Wang, K. H. Chi, M.-T. Chuang, C.-F. Ou-Yang, and J. S. Fu (2013), An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS, Atmos. Environ., 78, 1-19.
Liu, J., L. Zhu, H. Wang, Y. Yang, J. Liu, D. Qiu, W. Ma, Z. Zhang, and J. Liu (2016), Dry deposition of particulate matter at an urban forest, wetland and lake surface in Beijing, Atmos. Environ., 125, 178-187.
Liu, X., J. Li, Y. Qu, T. Han, L. Hou, J. Gu, C. Chen, Y. Yang, X. Liu, and T. Yang (2013), Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13(9), 4501.
Liu, X. G., et al. (2013), Formation and evolution mechanism of regional haze: a case study in the megacity Beijing, China, Atmos. Chem. Phys., 13(9), 4501-4514.
Lu, H. Y., S. L. Lin, J. K. Mwangi, L. C. Wang, and H. Y. Lin (2016), Characteristics and Source Apportionment of Atmospheric PM2.5 at a Coastal City in Southern Taiwan, Aerosol Air Qual. Res., 16(4), 1022-1034.
Ma, Z., X. Hu, A. M. Sayer, R. Levy, Q. Zhang, Y. Xue, S. Tong, J. Bi, L. Huang, and Y. Liu (2016), Satellite-based spatiotemporal trends in PM2. 5 concentrations: China, 2004-2013, Environmental Health Perspectives (Online), 124(2), 184.
Matsuda, K., Y. Fujimura, K. Hayashi, A. Takahashi, and K. Nakaya (2010), Deposition velocity of PM2. 5 sulfate in the summer above a deciduous forest in central Japan, Atmos. Environ., 44(36), 4582-4587.
McKendry, I. G. (2006), Background concentrations of PM2. 5 and ozone in British Columbia, Canada, Citeseer.
Menon, S., N. Unger, D. Koch, J. Francis, T. Garrett, I. Sednev, D. Shindell, and D. Streets (2008), Aerosol climate effects and air quality impacts from 1980 to 2030, Environ. Res. Lett., 3(2), 024004.
Miao, Y., J. Guo, S. Liu, H. Liu, Z. Li, W. Zhang, and P. Zhai (2017), Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution, Atmos. Chem. Phys., 17(4), 3097-3110.
O′Doherty, S., et al. (2001), In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998, Journal of Geophysical Research: Atmospheres, 106(D17), 20429-20444.
Ou-Yang, C.-F., N.-H. Lin, C.-C. Lin, S.-H. Wang, G.-R. Sheu, C.-T. Lee, R. C. Schnell, P. M. Lang, T. Kawasato, and J.-L. Wang (2014), Characteristics of atmospheric carbon monoxide at a high-mountain background station in East Asia, Atmos. Environ., 89, 613-622.
Patashnick, H., and E. G. Rupprecht (1991), Continuous PM-10 measurements using the tapered element oscillating microbalance, Journal of the Air & Waste Management Association, 41(8), 1079-1083.
Pope III, C. A., R. T. Burnett, M. C. Turner, A. Cohen, D. Krewski, M. Jerrett, S. M. Gapstur, and M. J. Thun (2011), Lung cancer and cardiovascular disease mortality associated with ambient air pollution and cigarette smoke: shape of the exposure-response relationships, Environmental health perspectives, 119(11), 1616.
Putaud, J. P., et al. (2004), European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ., 38(16), 2579-2595.
Reid, J. S., E. J. Hyer, R. S. Johnson, B. N. Holben, R. J. Yokelson, J. Zhang, J. R. Campbell, S. A. Christopher, L. Di Girolamo, and L. Giglio (2013), Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program, Atmos. Res., 122, 403-468.
Rigby, M., R. Prinn, S. O′Doherty, B. Miller, D. Ivy, J. Mühle, C. Harth, P. Salameh, T. Arnold, and R. Weiss (2014), Recent and future trends in synthetic greenhouse gas radiative forcing, Geophysical Research Letters, 41(7), 2623-2630.
Ruckstuhl, A. F., M. P. Jacobson, R. W. Field, and J. A. Dodd (2001), Baseline subtraction using robust local regression estimation, Journal of Quantitative Spectroscopy and Radiative Transfer, 68(2), 179-193.
Salvador, P., B. Artíñano, X. Querol, A. Alastuey, and M. Costoya (2007), Characterisation of local and external contributions of atmospheric particulate matter at a background coastal site, Atmos. Environ., 41(1), 1-17.
Shimada, K., et al. (2016), Characteristics of carbonaceous aerosols in large-scale Asian wintertime outflows at Cape Hedo, Okinawa, Japan, Journal of Aerosol Science, 100, 97-107.
Shimada, K., A. Takami, S. Kato, Y. Kajii, and S. Hatakeyama (2011), Variation of carbonaceous aerosol in polluted air mass transported from East Asia and evaluation of their source origin, Journal of Japan Society for Atmospheric Environment/Taiki Kankyo Gakkaishi, 46(1), 1-9.
Siwen, W., Z. Qiang, V. M. Randall, P. Sajeev, L. Fei, L. Meng, J. Xujia, and H. Kebin (2015), Satellite measurements oversee China’s sulfur dioxide emission reductions from coal-fired power plants, Environ. Res. Lett., 10(11), 114015.
Stein, A., R. R. Draxler, G. D. Rolph, B. J. Stunder, M. Cohen, and F. Ngan (2015), NOAA’s HYSPLIT atmospheric transport and dispersion modeling system, Bulletin of the American Meteorological Society, 96(12), 2059-2077.
Thermo Fisher Inc. (2008), TEOM® series 1400a Ambient Particulate Monitor Operation Manual, Thermo Fisher Inc.
Vecchi, G. A., B. J. Soden, A. T. Wittenberg, I. M. Held, A. Leetmaa, and M. J. Harrison (2006), Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing, Nature, 441(7089), 73-76.
Vingarzan, R. (2004), Ambient Particulate Matter Concentrations in Canada and Background Levels. Environment Canada, Environmental Conservation Branch, Aquatic and Atmospheric Sciences Division, 201-401.
Wang, J., Y. F. Zhang, Y. C. Feng, X. J. Zheng, L. Jiao, S. M. Hong, J. D. Shen, T. Zhu, J. Ding, and Q. Zhang (2016), Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China, Atmos. Res., 178, 570-579.
Wang, S.-H., W.-T. Hung, S.-C. Chang, and M.-C. Yen (2016), Transport characteristics of Chinese haze over Northern Taiwan in winter, 2005-2014, Atmos. Environ., 126, 76-86.
Wang, S., B. Zhao, S. Cai, Z. Klimont, C. Nielsen, T. Morikawa, J. Woo, Y. Kim, X. Fu, and J. Xu (2014), Emission trends and mitigation options for air pollutants in East Asia, Atmos. Chem. Phys., 14(13), 6571-6603.
Wang, Y., X. Zhang, J. Sun, X. Zhang, H. Che, and Y. Li (2015), Spatial and temporal variations of the concentrations of PM 10, PM 2.5 and PM 1 in China, Atmos. Chem. Phys., 15(23), 13585-13598.
WHO (2006), Air quality guidelines: global update 2005: particulate matter, ozone, nitrogen dioxide, and sulfur dioxide, World Health Organization.
Wu, Y., Z. Han, C. Nazmi, B. Gross, and F. Moshary (2015), A trans-Pacific Asian dust episode and its impacts to air quality in the east coast of US, Atmos. Environ., 106, 358-368.
Xu, J.-W., R. Martin, A. Van Donkelaar, J. Kim, M. Choi, Q. Zhang, G. Geng, Y. Liu, Z. Ma, and L. Huang (2015), Estimating ground-level PM 2.5 in eastern China using aerosol optical depth determined from the GOCI satellite instrument, Atmos. Chem. Phys., 15(22), 13133-13144.
Zhang, L., H. Liao, and J. Li (2010), Impacts of Asian summer monsoon on seasonal and interannual variations of aerosols over eastern China, Journal of Geophysical Research: Atmospheres, 115(D7).
Zhang, R., J. Jing, J. Tao, S.-C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, and Y. Zhao (2013), Chemical characterization and source apportionment of PM 2.5 in Beijing: seasonal perspective, Atmos. Chem. Phys., 13(14), 7053-7074.
Zhao, X., X. Zhang, X. Xu, J. Xu, W. Meng, and W. Pu (2009), Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing, Atmos. Environ., 43(18), 2893-2900.
Zhao, Y., J. Zhang, and C. Nielsen (2013), The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO 2 in China, Atmos. Chem. Phys., 13(2), 487-508.
Zhao, Y., J. Zhang, and C. P. Nielsen (2014), The effects of energy paths and emission controls and standards on future trends in China′s emissions of primary air pollutants, Atmos. Chem. Phys., 14(17), 8849-8868.
Zheng, C., C. Zhao, Y. Zhu, Y. Wang, X. Shi, X. Wu, T. Chen, F. Wu, and Y. Qiu (2017), Analysis of Influential Factors for the Relationship between PM2.5 and AOD in Beijing, Atmos. Chem. Phys. Discuss., 2017, 1-57.
Zheng, G., F. Duan, H. Su, Y. Ma, Y. Cheng, B. Zheng, Q. Zhang, T. Huang, T. Kimoto, and D. Chang (2015), Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15(6), 2969-2983.
指導教授 林能暉、王聖翔(Neng-Huei Lin Sheng-Hsiang Wang) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明