博碩士論文 104621024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:54.159.85.193
姓名 李天朗(Tin-Long Lei)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 北台灣雨水汞濃度及濕沉降量之時空分布
(Temporal and spatial distribution of mercury concentration in rainwater and mercury wet deposition flux in Northern Taiwan)
相關論文
★ 鹿林山大氣汞分布與乾濕沉降特徵及來源推估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 東亞是全球人為大氣汞排放量最高的區域,不同國際團隊的模式模擬結果都顯示東亞大陸下風區域是高大氣汞濃度與沈降區域,而濕沉降已知是地表環境與生態系統重要污染來源,然而目前仍缺乏東亞下風區域大氣汞濕沈降研究成果發表,尤其是長時間資料分析。因此,本研究分析2010至2015年我國環保署大氣汞濕沈降監測網北部三測站每週雨水汞樣本之資料,包含都會區的台北、離島的彭佳嶼以及山區的鞍部測站,探討北台灣雨水汞濃度及濕沈降量之時空分布與影響機制。
台北、彭佳嶼及鞍部測站雨水汞濃度的 六年權重平均值分別為 10.60、7.77及9.97 ng/L,與北美及歐洲測站之結果相近。而年平均汞濕沈降量分別為 ,與北美及歐洲測站之結果相近。而年平均汞濕沈降量分別為 25.12、12.92及45.36 µg m-2 yr-1,北台灣位於亞熱帶雨量明顯比歐美較多而各測站之樣本汞濕沉 ,北台灣位於亞熱帶雨量明顯比歐美較多而各測站之樣本汞濕沉 降量與樣本雨呈正相關,顯示影響北台灣之汞濕沉。因此結果比美及歐洲之測站較高,尤其在鞍部。
彭佳嶼及鞍部站之雨水汞濃度季節變化不明顯,而台北則在夏最高,顯示 三測站於夏季有另外的雨水汞來源。在夏季西南季風應帶來較乾淨空氣,但雨水汞濃度與冬季相若甚至更高,可能是因為夏天容易產生較強對流,氣團與自由大氣層之高濃度二價汞混合,成為夏季汞濕沈降的來源。後將樣本濃度及雨量作相關性分析,台北及鞍部站西南季風季之雨水汞濃度沒有隨雨量的增加而明顯下降,顯示降雨期間台北雨水汞有持續來源。再將各樣本依據降雨事件型態作天氣事件分類,發現三個測站於代表局地強對流的午後雷陣雨型態中,雨水汞濃度都比其他降雨形態高,進一步說明高層大氣含有高濃度氣態反應汞,並持續地補充至雨水中。
雨水汞濃度及濕沉降總量都有明顯的年際變化,最高值與最低值有約兩倍差距,推測兩者與大尺度氣候系統變化有關,本研究把兩者與南方震盪指數(SOI)作相關性的探討。然而由資料年期太短,需要更長期的資料才能得出結論。
摘要(英)
East Asia is the highest atmospheric mercury emission region in the world, various studies have shown that downwind area in East Asia has high atmospheric mercury concentration and deposition by using model simulations. Atmospheric wet deposition is the important source of mercury pollution to the ecosystem. However, there was lack of studies about mercury wet deposition in the downwind area in East Asia, especially long-term data analysis. Therefore, the mercury wet deposition weekly data from Taiwan EPA during 2010-2015 used at three stations in North Taiwan, include Taipei (urban), Pengjia islet (remote island) and Anbu (mountain) station, to discuss the temporal and spatial variation of the mercury wet deposition in Northern Taiwan.
VWM Hg concentration in Taipei, Pengjia islet and Anbu station were 10.60, 7.77 and 9.97 ng L-1 respectively, which were similar to other stations in Europe and North America. Mercury wet deposition flux were 25.12, 12.92 and 45.36 µg m-2 yr-1 in three stations respectively, North Taiwan is located in the subtropical region, which had higher rainfall compare with Europe and North America, also sample mercury deposition flux was positively correlated with sample rainfall amount. Therefore, mercury deposition flux was higher than Europe and North America, especially in Anbu station.
However, the seasonal variation of rainwater mercury concentration was not clear at Pengjia islet and Anbu station, while it was the highest in Summer at Taipei. In summer, the dominated wind is southwest monsoon in North Taiwan, which took clearer air mass to Taiwan, the source of mercury might relate to high convection rain is more frequently in summer, air mass may mix with a global pool of RGM in the free troposphere, which provides the source of the mercury.
Correlation analysis performed with Hg concentration of each sample and rainfall amount, results showed that the washout effect in Taipei and Anbu station was weak, there should have continuous source beside local emission. Different events were separated according to weather systems causing rain, we found that Hg VWM concentration was the highest in the type of afternoon thunderstorm at both three stations, which show there was high reactive gaseous mercury in the free troposphere and provide a continuous source to rainwater.
Both VWM concentration and wet deposition flux had obvious yearly variation, 2 times difference between the maximum and minimum value, it might relate to the large-scale climate system. Correlation analysis performed between South Oscillation Index and above two parameters. However, the length of data was too short to compare with long-term climate index, longer data was needed to get a conclusion.
關鍵字(中) 關鍵字(英) ★ Mercury
論文目次
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究動機 1
第二章 文獻回顧 6
2.1 汞介紹 6
2.1.1 汞的基本性質 6
2.1.2 汞的來源 7
2.1.3 汞的危害 7
2.2 相關研究回顧 9
第三章 實驗方法 14
3.1 測站介紹 14
3.1.1 台北站 15
3.1.2 彭佳嶼站 16
3.1.3 鞍部站 16
3.2雨水樣本採樣分析 17
3.3雨水中主要離子分析 18
3.4 濕沉降計算方法 19
3.4.1 權重平均濃度 19
3.4.2 濕沉降總量計算 19
3.5天氣分類 21
3.6南方震盪指數 23
第四章 結果與討論 24
4.1 雨水中主要離子 24
4.2 汞濕沉降樣本數據統計 26
4.3 測站分析及季節變化 29
4.3.1 台北站 29
4.3.2 彭佳嶼站 36
4.3.3 鞍部站 39
4.4 天氣分類 42
4.5 年際變化 50
4.6 汞濕沉降與聖嬰現象之關係 54
4.7 三站之比較 61
4.8 個案分析 62
第五章 結論與展望 68
5.1 結論 68
5.2 未來展望及建議 69
參考文獻 70

參考文獻
呂世宗、林能暉、劉錦龍、許桂榮、彭啟明、張哲明、張時禹,2010:酸雨監測分析及 有害物質濕沉降調查評估。行政院環境保護署。
呂世宗、林能暉、林登秋、許桂榮、彭啟明、張哲明、王聖翔,2011:酸雨及有害物質 濕沉降監測分析調查專案工作計畫。行政院環境保護署。
呂世宗、林能暉、林登秋、許桂榮、彭啟明、張哲明、許世傑、王聖翔,2012:酸雨及 有害物質濕沉降監測分析調查專案工作計畫(二)。行政院環境保護署。
呂世宗、林能暉、林登秋、許桂榮、彭啟明、張哲明、許世傑、王聖翔,2013:酸雨及 有害物質濕沉降監測分析調查專案工作計畫(三)。行政院環境保護署。
呂世宗、林能暉、林登秋、許桂榮、彭啟明、張哲明、王琳麒,2014:酸雨監測及成份分析調查評估專案工作計畫。行政院環境保護署。
呂世宗、林能暉、林登秋、許桂榮、彭啟明、張哲明、王琳麒,2015:酸雨監測及成份分析調查評估(第二年)專案工作計畫。行政院環境保護署。
林定賢,2014:中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究。 國立中央大學大氣物理研究所學位論文 ,中壢。
林達偉,2014:鹿林山大氣汞分布與乾濕沉降特徵及來源推估。國立中央大學大氣物理研究所學位論文,中壢。
簡瑋靚,2008:北台灣冬季層狀雲化學特性分析。國立中央大學大氣物理研究所學位論文,中壢。
劉昭民,1982:夏季台灣近海低壓對台灣天氣之影響。大氣科學。
Ahn, M.-C., S.-M. Yi, T. M. Holsen and Y.-J. Han (2011). ”Mercury wet deposition in rural Korea: concentrations and fluxes.” Journal of Environmental Monitoring 13(10): 2748-2754.
Assessment, U. G. M. (2013). ”Sources, Emissions, Releases and Environmental Transport.” UNEP Chemicals Branch, Geneva, Switzerland 42.
Brunke, E.-G., C. Walters, T. Mkololo, L. Martin, C. Labuschagne, B. Silwana, F. Slemr, A. Weigelt, R. Ebinghaus and V. Somerset (2016). ”Mercury in the atmosphere and in rainwater at Cape Point, South Africa.” Atmospheric Environment 125: 24-32.
Caffrey, J., W. Landing, S. Nolek, K. Gosnell, S. Bagui and S. Bagui (2010). ”Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability.” Atmospheric Chemistry and Physics 10(12): 5425-5434.
Chen, C.-S. and Y.-L. Chen (2003). ”The rainfall characteristics of Taiwan.” Monthly Weather Review 131(7): 1323-1341.
Chen, J.-M., T. Li and C.-F. Shih (2008). ”Asymmetry of the El Niño-spring rainfall relationship in Taiwan.” Journal of the Meteorological Society of Japan. Ser. II 86(2): 297-312.
Chen, T.-C., S.-Y. Wang and M.-C. Yen (2007). ”Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei.” Journal of Applied Meteorology and Climatology 46(9): 1324-1340.
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao and E. S. Takle (2014). ”Impact of afternoon thunderstorms on the land–sea breeze in the Taipei Basin during summer: an experiment.” Journal of Applied Meteorology and Climatology 53(7): 1714-1738.
Conaway, C. H., F. J. Black, P. Weiss-Penzias, M. Gault-Ringold and A. R. Flegal (2010). ”Mercury speciation in Pacific coastal rainwater, Monterey Bay, California.” Atmospheric Environment 44(14): 1788-1797.
Ebinghaus, R., S. Jennings, W. Schroeder, T. Berg, T. Donaghy, J. Guentzel, C. Kenny, H. Kock, K. Kvietkus and W. Landing (1999). ”International field intercomparison measurements of atmospheric mercury species at Mace Head, Ireland.” Atmospheric Environment 33(18): 3063-3073.
Ebinghaus, R., F. Slemr, C. Brenninkmeijer, P. Van Velthoven, A. Zahn, M. Hermann, D. O′Sullivan and D. Oram (2007). ”Emissions of gaseous mercury from biomass burning in South America in 2005 observed during CARIBIC flights.” Geophysical Research Letters 34(8).
Engle, M. A., M. T. Tate, D. P. Krabbenhoft, J. J. Schauer, A. Kolker, J. B. Shanley and M. H. Bothner (2010). ”Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America.” Journal of Geophysical Research: Atmospheres 115(D18).
Faïn, X., D. Obrist, A. Hallar, I. Mccubbin and T. Rahn (2009). ”High levels of reactive gaseous mercury observed at a high elevation research laboratory in the Rocky Mountains.” Atmospheric Chemistry and Physics 9(20): 8049-8060.
Fan, Y.-C. (2011). Temporal and Spatial Distribution of Mercury and Heavy Metals in Wet Deposition in Taiwan, National Central University.
Feng, J., W. Chen, C. Y. Tam and W. Zhou (2011). ”Different impacts of El Niño and El Niño Modoki on China rainfall in the decaying phases.” International Journal of Climatology 31(14): 2091-2101.
Fu, X., X. Feng, Z. Dong, R. Yin, J. Wang, Z. Yang and H. Zhang (2010). ”Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China.” Atmospheric Chemistry and Physics 10(5): 2425-2437.
Fuller, D. O. and K. Murphy (2006). ”The ENSO-fire dynamic in insular Southeast Asia.” Climatic Change 74(4): 435-455.
Gratz, L. E., G. J. Keeler and E. K. Miller (2009). ”Long-term relationships between mercury wet deposition and meteorology.” Atmospheric Environment 43(39): 6218-6229.
Guey-Rong Sheu, N.-H. L. (2013). ”Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean.” Atmospheric Environment: 474-481.
Gustin, M. S., H. M. Amos, J. Huang, M. B. Miller and K. Heidecorn (2015). ”Measuring and modeling mercury in the atmosphere: a critical review.” Atmospheric Chemistry and Physics 15(10): 5697-5713.
Holmes, C. D., N. P. Krishnamurthy, J. M. Caffrey, W. M. Landing, E. S. Edgerton, K. R. Knapp and U. S. Nair (2016). ”Thunderstorms increase mercury wet deposition.” Environmental science & technology 50(17): 9343-9350.
Huang, J., S. Kang, Q. Zhang, J. Guo, M. Sillanpää, Y. Wang, S. Sun, X. Sun and L. Tripathee (2015). ”Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau.” Environmental Pollution 206: 518-526.
Kaulfus, A. S., U. Nair, C. D. Holmes and W. M. Landing (2017). ”Mercury Wet Scavenging and Deposition Differences by Precipitation Type.” Environmental science & technology 51(5): 2628-2634.
Keeler, G. J., L. E. Gratz and K. Al-wali (2005). ”Long-term atmospheric mercury wet deposition at Underhill, Vermont.” Ecotoxicology 14(1): 71-83.
Keeler, G. J., M. S. Landis, G. A. Norris, E. M. Christianson and J. T. Dvonch (2006). ”Sources of mercury wet deposition in eastern Ohio, USA.” Environmental science & technology 40(19): 5874-5881.
Keene, W. C., A. A. Pszenny, J. N. Galloway and M. E. Hawley (1986). ”Sea‐salt corrections and interpretation of constituent ratios in marine precipitation.” Journal of Geophysical Research: Atmospheres 91(D6): 6647-6658.
Kudo, A., Y. Fujikawa, S. Miyahara, J. Zheng, H. Takigami, M. Sugahara and T. Muramatsu (1998). ”Lessons from Minamata mercury pollution, Japan—after a continuous 22 years of observation.” Water Science and Technology 38(7): 187-193.
Landis, M. S. and G. J. Keeler (1997). ”Critical evaluation of a modified automatic wet-only precipitation collector for mercury and trace element determinations.” Environmental science & technology 31(9): 2610-2615.
Lin, C.-J. and S. O. Pehkonen (1999). ”The chemistry of atmospheric mercury: a review.” Atmospheric Environment 33(13): 2067-2079.
Lin, C.-Y., S. C. Liu, C. C.-K. Chou, S.-J. Huang, C.-M. Liu, C.-H. Kuo and C.-Y. Young (2005). ”Long-range transport of aerosols and their impact on the air quality of Taiwan.” Atmospheric Environment 39(33): 6066-6076.
Lin, N.-H., H.-M. Lee and M.-B. Chang (1999). ”Evaluation of the characteristics of acid precipitation in Taipei, Taiwan using cluster analysis.” Water, Air, & Soil Pollution 113(1): 241-260.
Logar, M., M. Horvat, I. Falnoga and V. Stibilj (2000). ”A methodological study of mercury speciation using Dogfish liver CRM (DOLT-2).” Fresenius′ journal of analytical chemistry 366(5): 453-460.
Lombard, M., J. Bryce, H. Mao and R. Talbot (2011). ”Mercury deposition in southern New Hampshire, 2006–2009.” Atmospheric Chemistry and Physics 11(15): 7657-7668.
Lyman, S. N. and D. A. Jaffe (2012). ”Formation and fate of oxidized mercury in the upper troposphere and lower stratosphere.” Nature Geoscience 5(2): 114-117.
Lynam, M. M., J. T. Dvonch, J. A. Barres, M. S. Landis and A. S. Kamal (2016). ”Investigating the impact of local urban sources on total atmospheric mercury wet deposition in Cleveland, Ohio, USA.” Atmospheric Environment 127: 262-271.
Marumoto, K. and A. Matsuyama (2014). ”Mercury speciation in wet deposition samples collected from a coastal area of Minamata Bay.” Atmospheric environment 86: 220-227.
Mason, R. P. and G. R. Sheu (2002). ”Role of the ocean in the global mercury cycle.” Global biogeochemical cycles 16(4).
National Atmospheric Deposition Program (2016). National Atmospheric Deposition Program 2015 Annual Summary. NADP Data Report 2016-02. Illinois State Water Survey, University of Illinois at Urbana-Champaign, IL
Qiao, X., W. Xiao, D. Jaffe, S. H. Kota, Q. Ying and Y. Tang (2015). ”Atmospheric wet deposition of sulfur and nitrogen in Jiuzhaigou National Nature Reserve, Sichuan Province, China.” Science of The Total Environment 511: 28-36.
Qin, C., Y. Wang, Y. Peng and D. Wang (2016). ”Four-year record of mercury wet deposition in one typical industrial city in southwest China.” Atmospheric Environment 142: 442-451.
Risch, M. R., D. A. Gay, K. K. Fowler, G. J. Keeler, S. M. Backus, P. Blanchard, J. A. Barres and J. T. Dvonch (2012). ”Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008.” Environmental pollution 161: 261-271.
Sakata, M. and K. Asakura (2007). ”Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan.” Atmospheric Environment 41(8): 1669-1680.
Sakata, M. and K. Marumoto (2005). ”Wet and dry deposition fluxes of mercury in Japan.” Atmospheric Environment 39(17): 3139-3146.
Schroeder, W. H. and J. Munthe (1998). ”Atmospheric mercury—an overview.” Atmospheric Environment 32(5): 809-822.
Selin, N. E. (2009). ”Global biogeochemical cycling of mercury: a review.” Annual Review of Environment and Resources 34: 43-63.
Selin, N. E. and D. J. Jacob (2008). ”Seasonal and spatial patterns of mercury wet deposition in the United States: Constraints on the contribution from North American anthropogenic sources.” Atmospheric Environment 42(21): 5193-5204.
Selin, N. E., D. J. Jacob, R. J. Park, R. M. Yantosca, S. Strode, L. Jaeglé and D. Jaffe (2007). ”Chemical cycling and deposition of atmospheric mercury: Global constraints from observations.” Journal of Geophysical Research: Atmospheres 112(D2).
Shanley, J. B., M. A. Engle, M. Scholl, D. P. Krabbenhoft, R. Brunette, M. L. Olson and M. E. Conroy (2015). ”High mercury wet deposition at a “clean air” site in Puerto Rico.” Environmental Science & Technology 49(20): 12474-12482.
Sheu, G.-R. and N.-H. Lin (2011). ”Mercury in cloud water collected on Mt. Bamboo in northern Taiwan during the northeast monsoon season.” Atmospheric environment 45(26): 4454-4462.
Sheu, G.-R., N.-H. Lin, C.-T. Lee, J.-L. Wang, M.-T. Chuang, S.-H. Wang, K. H. Chi and C.-F. Ou-Yang (2013). ”Distribution of atmospheric mercury in northern Southeast Asia and South China sea during Dongsha experiment.” Atmospheric Environment 78: 174-183.
Sheu, G.-R., N.-H. Lin, J.-L. Wang, C.-T. Lee, C.-F. O. Yang and S.-H. Wang (2010). ”Temporal distribution and potential sources of atmospheric mercury measured at a high-elevation background station in Taiwan.” Atmospheric Environment 44(20): 2393-2400.
Sheu, G.-R. and R. P. Mason (2001). ”An examination of methods for the measurements of reactive gaseous mercury in the atmosphere.” Environmental science & technology 35(6): 1209-1216.
Siudek, P., I. Kurzyca and J. Siepak (2016). ”Atmospheric deposition of mercury in central Poland: sources and seasonal trends.” Atmospheric Research 170: 14-22.
Slemr, F., C. A. Brenninkmeijer, A. Rauthe‐Schöch, A. Weigelt, R. Ebinghaus, E. G. Brunke, L. Martin, T. G. Spain and S. O′Doherty (2016). ”El Niño–Southern Oscillation influence on tropospheric mercury concentrations.” Geophysical Research Letters.
Soerensen, A. L., R. P. Mason, P. H. Balcom, D. J. Jacob, Y. Zhang, J. Kuss and E. M. Sunderland (2014). ”Elemental mercury concentrations and fluxes in the tropical atmosphere and ocean.” Environmental science & technology 48(19): 11312-11319.
Sprovieri, F., N. Pirrone, M. Bencardino, F. D′Amore, H. Angot, C. Barbante, E.-G. Brunke, F. Arcega-Cabrera, W. Cairns and S. Comero (2017). ”Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres.” Atmospheric Chemistry and Physics 17(4): 2689-2708.
Wang, Y., Y. Peng, D. Wang and C. Zhang (2014). ”Wet deposition fluxes of total mercury and methylmercury in core urban areas, Chongqing, China.” Atmospheric environment 92: 87-96.
Weiss-Penzias, P., H. Amos, N. Selin, M. Gustin, D. Jaffe, D. Obrist, G.-R. Sheu and A. Giang (2015). ”Use of a global model to understand speciated atmospheric mercury observations at five high-elevation sites.” Atmospheric Chemistry and Physics 15(3): 1161-1173.
Weiss‐Penzias, P., M. S. Gustin and S. N. Lyman (2009). ”Observations of speciated atmospheric mercury at three sites in Nevada: Evidence for a free tropospheric source of reactive gaseous mercury.” Journal of Geophysical Research: Atmospheres 114(D14).
Weiss-Penzias, P. S., D. A. Gay, M. E. Brigham, M. T. Parsons, M. S. Gustin and A. ter Schure (2016). ”Trends in mercury wet deposition and mercury air concentrations across the US and Canada.” Science of The Total Environment 568: 546-556.
Wu, M., W. Chang and W. Leung (2004). ”Impacts of El Niño–Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific.” Journal of Climate 17(6): 1419-1428.
Zhu, J., T. Wang, R. Talbot, H. Mao, X. Yang, C. Fu, J. Sun, B. Zhuang, S. Li and Y. Han (2014). ”Characteristics of atmospheric mercury deposition and size-fractionated particulate mercury in urban Nanjing, China.” Atmospheric Chemistry and Physics 14(5): 2233-2244.
指導教授 許桂榮(Guey-Rong Sheu) 審核日期 2017-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明