博碩士論文 104622004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:54.224.91.58
姓名 吳秉昀(Ping-Yun Wu)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 地電阻影像法於海岸生物礁調查之研究 -以桃園觀音區為例
(Investigating Biological Reefs in Guanyin, Taoyuan, by Using Electrical Resistivity Tomography Method)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    至系統瀏覽論文 (2022-8-1以後開放)
摘要(中) 臺灣桃園市觀音區至新屋區海岸有臺灣地區發育較為完整且面積廣大之藻礁分布,本區大部份礁體早期為珊瑚礁發育,後期則以殼狀珊瑚藻為主要造礁生物,其生態系具有相當的獨特性,且動物棲息之密度極高,因此亟需就地進行保育。地電阻影像剖面探測技術為一施測快速且非破壞性之地球物理方法,由於含水礁體較其它地層具有更低電阻率之電性特徵,因此常應用於生物礁之相關探勘。本研究為國內首次應用地電阻影像法於桃園海岸生物礁之研究,其目的為藉由地電阻影像法尋找生物礁之分布範圍及深度,以在不影響礁體本身與其周遭生態之情況下,求得調查區域之生物礁分佈空間型態,及其與上方砂泥沈積物或其下方礫石層間之分層與接觸關係。本研究首先探討不同地電阻陣列與逆推計算方法對於地下構造的解析度,比較從原始資料取得放電時ΔV/I值之不同計算方法,並將結果應用於觀音海岸生物礁地電阻調查與研究資料處理。研究區域為桃園觀音區海岸富林溪南岸至觀音溪南岸之沿海區域,共有三條平行海岸線各960米長,與一條垂直海岸線長230米之地電阻測線。施測所得之電阻率剖面以阿爾奇定律為基礎,參照鑽井地質資料、砂樣試驗分析與透地雷達剖面以定位地電阻剖面中覆砂、礁體與礫石層之分層位置。本研究所得調查區域之礁體分布深度為0-1.5米(上方為砂層)至4-6米(下方為礫石層),另於最南邊測線之礁體層於末端一百米有愈來愈薄之趨勢,應為接近本研究調查區域之生物礁分布邊界。
摘要(英) The biological reefs located along the coastal line of Guanyin and Xinwu districts in Taoyuan city is consisted of algal reefs and coral reefs, and also regarded as a big and complete biological reef area in Taiwan. Algal reefs build up extremely slow and expand only 0.9 to 2.3 mm every month; as a result, any investigation in the algal reef area must be implemented very carefully to reduce potential influence in the environment. Because of special electrical property of reefs, it is suitable for applications of electrical exploration methods. The Electrical Resistivity Tomography (ERT) is a fast, non-destructive, and inexpensive surficial geophysical survey method, and therefore it is widely used to investigate reefs. In this study, the location, distribution area and depth of algal reefs were investigated by ERT method to provide a reliable reference of coastal engineering and the establishment of ecosystem refuge. The study area is from the south coast of Fulin river to the south coast of Guanyin river. There are four ERT survey lines, three of them are 960m long and parallel to the shoreline, and the other one is 240m long and perpendicular to others. According to the Archie′s Law, the porosity was calculated from the resistivity profile to estimate the depth of reefs beneath each survey line and verify the estimates with the data obtained from borehole core. The results show that the upper boundary of the reefs is 0-1.5m deep (there are sands layer above), and the lower boundary is 4-6m deep (there are conglomerates layer below) in the study area. In addition, all profiles obtained from the north-south survey lines show that the depth of reefs becomes shallower in the range of 100 m in the southernmost end, indicating the southern boundary of the reef distribution in the study area.
關鍵字(中) ★ 地電阻影像法
★ 藻礁
★ 生物礁
★ 孔隙度
★ 電阻率
關鍵字(英) ★ electrical resistivity tomography method
★ algal reefs
★ biological reefs
★ porosity
★ resistivity
論文目次 中文摘要 …………………………………………………… i
英文摘要 …………………………………………………… ii
誌謝 ……………………………………………………………… iii
目錄 ……………………………………………………………… v
圖目 ……………………………………………………………… vii
表目 ……………………………………………………………… x
第一章、 緒論……………………………………………………… 1
1-1 前人研究與研究動機………………………………… 1
1-2 本文內容…………………………………………………… 5
第二章、 地電阻影像法研究原理與方法…… 9
2-1 直流電阻法簡介…………………………………………… 9
2-2 電極排列法………………………………………………… 11
2-3 地電阻逆推方法…………………………………………… 14
2-3-1 阻尼最小平方法…………………………………………… 15
2-3-2 平滑約束最小平方法…………………………………… 15
2-3-3 迭代反覆加權最小平方法…………………………… 16
2-4 不同電極陣列於相同模型順逆推比較………… 16
2-4-1 高低電阻夾雜模型………………………………………… 16
2-4-2 仿礁體結構模型…………………………………………… 16
2-5 電極陣列模型順推逆推結果………………………… 18
2-5-1 高低電阻夾雜模型………………………………………… 18
2-5-2 仿礁體結構模型…………………………………………… 28
第三章、 生物礁調查與研究方法………………………… 36
3-1 研究場址地電阻測線規劃與其他地質、地球物理調查… 36
3-2 地電阻資料處理流程……………………………………… 46
3-2-1 ΔV/I值計算……………………………………………… 46
3-2-2 逆推資料篩選……………………………………………… 47
3-2-3 每次逆推之迭代次數選擇……………………… 48
3-3 ΔV/I值計算方法說明…………………………………… 51
3-3-1 四次多項式回歸…………………………………………… 51
3-3-2 微分濾除…………………………………………………… 51
3-3-3 微分濾除合併多項式回歸……………………… 52
3-4 ΔV/I值計算方法結果…………………………………… 53
3-4-1 ΔV/I值結果分析與比較………………………………… 53
3-4-2 放電時電容或極化效應之影響…………………… 60
第四章、 研究結果與討論…………………………………………… 63
4-1 地電阻測線剖面圖………………………………………… 63
4-2 孔隙度計算與處理………………………………………… 66
4-2-1 阿爾奇定律模型與現地資料比較……………… 66
4-2-2 電阻率剖面換算孔隙度剖面………………………… 70
4-2-3 Line3後段測線分層計算……………………………… 71
第五章、 結論………………………………………………………… 82
參考文獻 ……………………………………………………………… 85
附錄 ……………………………………………………………… 90
參考文獻
Archie, G.E., “The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics”, Society of Petroleum Engineers, 1942.
Apostolopoulos, G., C. Orfanos, G. Amolochitis, K. Leontarakis, S. Stamataki, “Resistivity arrays in the detection of buried bodies”, Extended Abstracts of 4th Congress of the Balkan Geophysical Society, 2005.
Bosence, D.W.J., “Coralline algal reef frameworks”, Journal of the Geological Society, Vol 140, pp. 365-376, 1983.
Burnett, W.C. and H. Dulaiova, “Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements”, Journal of Environmental Radioactivity, Vol 69, pp. 21–35, 2003.
Bekler, T., Y.L. Ekinci, A. Demirci, A.E. Erginal, C. Ertekin, “Characterization of a Landslide using Seismic Refraction, Electrical Resistivity and HydrometerMethods, Adatepe – C¸ anakkale, NW Turkey”, Journal of Environmental and Engineering Geophysics, Vol 16(3) , pp. 115–126, 2011.
Befus, K.M., M.B. Cardenas, D.R. Tait, D.V. Erler, “Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting”, Journal of Hydrology, Vol 517, pp. 508–520, 2014.
Chambers, J.E., P.I. Meldrum, D.A. Gunn, P.B. Wilkinson, O. Kuras, A.L. Weller, R.D. Ogilvy,“Hydrogeophysical Monitoring of Landslide Processes Using Automated Time-Lapse Electrical Resistivity Tomography (ALERT)”, Near Surface 2009 – 15th European Meeting of Environmental and Engineering Geophysics, Dublin, Ireland, 2009.
Cardenas, M.B., P.B. Zamora, F.P. Siringan, M.R. Lapus, R.S. Rodolfo, G.S. Jacinto, M.L. San Diego-McGlone, C.L. Villanoy, O. Cabrera, M.I. Senal, “Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222Rn, and salinity measurements”, Geophysical Research Letters, Vol 37(16), 2010.
Clark, J.A. and R. Page, “Inexpensive Geophysical Instruments Supporting Groundwater Exploration in Developing Nations”, Journal of Water Resource and Protection, Vol 3(10), pp. 768-780, 2011.
Deparis, J., B. Fricout, D. Jongmans, T. Villemin, L. Effendiantz, A. Mathy, “Combined use of geophysical methods and remote techniques for characterizing the fracture network of a potentially unstable cliff site (the‘Roche du Midi’,Vercors massif, France)”, Journal of Geophysics and Engineering, Vol 5, pp. 147–157, 2008.
Jupp, D.L.B. and K. Vozoff, “Stable Iterative Methods for the Inversion of Geophysical Data”, Geophysical Journal International, Vol 42 (3), pp. 957-976, 1975.
Loke, M.H. and R.D. Barker, “Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method”, Geophysical Prospecting, Vol 44(1), pp. 131–152, 1992.
Li, L.X., “Application of Geophysical Prospecting to Multiple and Super Landslide Investigation”, Chinese Journal of Engineering Geophysics, Vol 6(5), 2009.
Lebourg, T., M. Hernandez, S. Zerathe ,S. El Bedoui, H. Jomard, B. Fresia, “Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach”, Journal of Applied Geophysics, Vol 74(1), pp. 69–80, 2011.
Leontarakis, K. and G.V. Apostolopoulos,“Laboratory study of the cross-hole resistivity tomography: the Model Stacking (MOST) Technique”, Journal of Applied Geophysics, Vol 80, pp. 67–82, 2012.
Leontarakis, K. and G.V. Apostolopoulos,“Model Stacking (MOST) technique applied in cross-hole ERT field data for the detection of Thessaloniki ancient walls′ depth”, Journal of Applied Geophysics, Vol 93, pp. 101–113, June 2013.
Minnery, G.A., R. Rezak, T.J. Bright, “Depth zonation and growth form of crustose coralline algae: Flower Garden Banks, Northwestern Gulf of Mexico”, Paleoalgology: Contemporary research and applications, pp. 237-246, 1985.
Schmoker, J.W. and R.B. Halley, “Carbonate Porosity Versus Depth: A Predictable Relation for South Florida”, The American Association of Petroleum Geologists Bulletin, Vol 66(12), pp. 2561-2570, 1982.
Swarzenski, P.W., W.C. Burnett, W.J. Greenwood, B. Herut, R. Peterson, N. Dimova, Y. Shalem, Y. Yechieli, and Y. Weinstein, “Combined time-series resistivity and geochemical tracer techniques to examine submarine groundwater discharge at Dor Beach, Israel”, Geophysical Research Letters, Vol. 33(24), 2006.
Szalai, S. and L. Szarka, “On the classification of surface geoelectric arrays”, Geophysical Prospecting, Vol 56(2), pp. 159–175, 2008.
Štěpančíková, P., J. Dohnal , T. Pánekc, M. Łój, V. Smolková, K. Šilhán, “The application of electrical resistivity tomography and gravimetric survey as useful tools in an active tectonics study of the Sudetic Marginal Fault (Bohemian Massif, central Europe)”, Journal of Applied Geophysics, Vol 74(1), pp. 69–80, 2011.
Terzić, J., F. Šumanovac, R. Buljan, “An assessment of hydrogeological parameters on the karstic island of Dugi Otok, Croatia”, Journal of Hydrology, Vol 343, pp. 29–42, 2007.
Tait, D.R., I.R. Santos, D.V. Erler, K.M. Befus, M.B. Cardenas, B.D. Eyre, “Estimating submarine groundwater discharge in a South Pacific coral reef lagoon using different radioisotope and geophysical approaches”, Marine Chemistry, Vol 156, pp. 49-60, 2013.
Verwer, K., G.P. Eberli, R.J. Weger, “Effect of pore structure on electrical resistivity in carbonates”, Marine Geosciences, Vol 95(2), pp. 175-190, 2011.
Winsauer, W.O., H.M. Shearing, Jr., P.H. Masson, M. Williams, ”Resistivity of brine saturated sands in relation to pore geometry”, The American Association of Petroleum Geologists Bulletin, Vol 36(2), pp. 253–277, 1952.
Wilkinson, P.B., J.E. Chambers, P.I. Meldrum, D.A. Gunn, R.D. Ogilvy and O. Kuras, “Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only”, Geophysical Journal International, Vol 183(2), pp. 543-556, 2010.
王士偉。「找礁、藻礁、找藻礁」,國立自然科學博物館館訊。275 期,1-8頁,2010年。
王子賓,「結合地電阻影像剖面法及透地雷達法調查DNAPLs之案例研究」,國立中央大學,碩士論文,2005年。
王子賓,「交互應用各式地球物理探勘方法於土壤及地下水汙染場址之研究」,國立中央大學,博士論文,2016年。
中國科學院南海海洋研究所,「2013年度珊瑚礁國家重大科學研究計劃項目野外考察、樣品採集及實驗分析」,南海珊瑚礁對多尺度熱帶海洋環境變化的響應、記錄與適應對策研究研究簡報第3期,2014年。
交通部中央氣象局,潮汐表,2015年。
林幸助、徐顯富、廖偉勝、李承錄、劉弼仁、林綉美。「桃園藻礁的生物多樣性」,濕地學刊,第2卷第2期,1-24頁,2013年。
洪彥豪,「應用地電阻影像剖面法於湖口斷層之研究」,國立中央大學,碩士論文,2004年。
國立中央大學,「桃園市政府農業局104年桃園市觀新藻礁生態保育委託專業服務勞務採購案期末報告(I)」,未發表。
崔永聖,馬林,劉宏岳,黄佳坤,「珊瑚島礁工程地球物理方法初探」,岩土力學(Rock and Soil Mechanics),第35卷第2期,683-689頁,2014年。
許芳鳴,「以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係」,國立中央大學,碩士論文,2015年。
劉靜榆,「台灣藻礁之特性與分布」,自然保育季刊。62 期,52-57頁,2008年。
潘忠政,「亟待救援的桃園藻礁」,生態臺灣,第37 期,36-42頁,2012年。
潘忠政,「國門一顆璀璨的珍珠-桃園藻礁」,生態臺灣,第49期,8-14頁,2015年。
戴昌鳳、張睿昇、王士偉,「大潭天然氣海底管線對於觀音海岸藻礁影響程度調查工作監測記錄分析報告書」,亞太環境科技股份有限公司,2009年。
指導教授 陳建志(Chien-Chih Chen) 審核日期 2017-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明