博碩士論文 104622017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.217.182.45
姓名 洪瑞駿(Ruei-Jiun Hung)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用TCDP井下地震儀陣列分析車籠埔斷層帶之非均向性
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 集集地震(Mw7.6)過後,為了更深入了解該地震之物理特性,台灣車籠斷層埔深鑽計畫(Taiwan Chelungpu-fault Drilling Project, TCDP)於2004年起執行。七部井下地震儀(TCDPBHS)組成之垂直陣列隨後被安裝在跨斷層帶位置以監控區域微地震。本研究利用TCDPBHS陣列探討集集地震後斷層帶的非均向性。方法部分,我們考慮尾波交相關法進行分析。相較於噪訊交相關函數來說,尾波能提供更均勻的散射波場以幫助我們得到更可靠的格林函數。本研究使用陣列最上部的地震儀做為虛擬震源並審慎定義尾波長度進行分析。從走時圖及粒子運動結果證明所得到的交相關波形屬於剪力波後,我們便將尾波以每5˚做水平旋轉並計算交相關以檢視方位角非均向性。其結果發現,斷層帶上磐的剪力波快軸方向大約為130˚,然而在斷層帶-下磐範圍則轉至160˚。此外本研究亦使用剪力波分離法(SWS)進行分析,在使用了94個入射角小於30˚的微地震後,所得到的快軸方向(~110˚)大致上與台灣的板塊聚合方向類似,然而利用該方法並無在斷層帶觀察到旋轉情形,此原因可能是由於震源-測站距離遠大於測站間距,以致無法清楚解析所致; 利用上磐的BHS1及BHS5之剪力波分離得到該地區非均向性程度約為6.4%。大致上來說,利用尾波交相關法幫助我們得到可靠的S波經驗格林函數,且觀察到斷層帶之非均向性,此結果也與前人進行現地量測的結果相似,暗示利用非侵入性的地震波觀測,也能有機會得到小尺度的構造特性。相較於高成本的井測分析,地震波觀測或許也為一可行之方法做為地下構造辨析。
摘要(英) The Taiwan Chelungpu-fault Drilling Project (TCDP) was operated to understand the fault zone characteristics after the 1999 Mw7.6 Chi-chi earthquake. Seven Borehole Seismometers (TCDPBHS) were installed through the identified fault zone (~1.1 km) to monitor the seismic activities and the fault-zone structure properties. This study aims to reveal the fault zone anisotropy after the Chi-chi earthquake. The method used here is coda cross correlation which is feasible for retrieving the reliable empirical Green’s function since coda waves are generated from multi-scattering. We use the top sensor as the virtual source, and the length of coda are also carefully determined before cross correlation. After confirming these cross correlation waveforms are really in presence of S wave Green’s function by examining the traveltime and particle motion analysis, we rotate the coda wave at horizontal components by every 5˚ to obtain the azimuthal anisotropy. Results indicate the fast shear wave direction in the hanging-wall site is about 130˚. However, the fast shear wave direction rotates to 160˚ in the fault zone and the foot-wall-side area. Shear wave splitting method (SWS) from local micro-events is also considered in this study. After checking the data in 2007, 94 events with incidence small than 30˚ are used. The obtained fast shear wave polarizations (FSP) at this area are generally consistent with direction of tectonic convergence (NW-SE) in Taiwan. However, no significant rotation of FSPs recorded at fault-zone station are observed, this might because of the short inter-station distance which unables shear waves to change the polarization. Totally 6.4% of anisotropy is obtained. Coda CCFs can retrieve a stable Green’s function to unveil the fault-zone anisotropy, and this result is also in agree with those identified from in-situ measurement. This means small scaled anisotropy can be revealed via seismic observation. Compare to well-logging, which are usually costly, anisotropy from seismic observation might be a good approach that will be more economical.
關鍵字(中) ★ 臺灣車籠埔深鑽計畫
★ 非均向性
★ 車籠埔斷層
★ 尾波交相關法
★ 剪力波分離
關鍵字(英) ★ Taiwan Chelungpu-fault Drilling Project
★ Anisotropy
★ Chelungpu fault
★ Coda cross correlation
★ Shear wave splitting
論文目次 中文摘要 iv
英文摘要 v
致謝 vi
目錄 vii
圖目論 ix
表目錄 xii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 區域地質背景 3
第二章 文獻回顧 8
2.1 集集地震回顧 8
2.2 台灣車籠埔斷層深鑽計畫與現地應力場研究 9
2.3 地震波非均向性研究 11
第三章 研究方法 21
3.1 TCDP波形資料介紹 21
3.2 震波交相關函數 22
3.2.1 分析原理 22
3.2.2 研究流程 26
3.3 剪力波分離法 28
3.3.1 分析原理 28
3.3.2 研究流程 29
第四章 研究結果與討論 45
4.1 TCDP尾波交相關函數重建之格林函數可靠性 45
4.1.1 視速度估算 46
4.1.2 粒子運動分析 47
4.2 斷層帶非均向性 48
4.2.1 尾波交相關函數結果 48
4.2.2 剪力波分離法結果 48
4.2.3 綜合比較與討論 50
第五章 結論 89
附錄一 TCDP環境噪訊特徵分析 91
附錄二 利用氣象局目錄之地震進行尾波交相關計算 102
參考文獻 110
參考文獻
Bensen, G.D., M. H. Ritzwoller, M. P. Barmin, A. L. Levshin, F. Lin, M. P. Moschetti, N. M. Shapiro, and Y. Yang. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophys. J. Int., 169, 1239-1260, 2007.

Bowman, J. R., and M. Ando. Shear-wave splitting in the upper-mantle wedge above the Tonga subduction zone. Geophys. J. R. astr. Soc., 88, 25-41, 1987.

Crampin, S, R. Evans, B. Üçer, M. Doyle, J. P. Davis, G. V. Yegorkina , and A. Miller. Observations of dilatancy-induced polarization anomalies and earthquake prediction. Nature, 286, 874 – 877, 1980.
Crampin, S. Evaluation of anisotropy by shear-wave splitting. Geophys., 50, 1, 142-152, 1985.

Crampin, S. Suggestions for a consistent terminology for seismic anisotropy, Geophys. Prosp., 37, 753-770, 1989.

Crampin, S., and H. Lovell. A decade of shear-wave splitting in the Earth’s crust: what does it mean? what use can we make of it? and what should we do next? Geophys. J. Int., 107, 387-407, 1991.

Crampin S. The fracture criticality of crustal rocks. Geophys. J. Int., 118, 428-438, 1994.

Crampin S., T. Volti, S. Chastin, A. Gudmundsson, and R. Stef´ansson. Indication of high pore-fluid pressures in a seismically-active fault zone. Geophys. J. Int., 151, F1–F5, 2002.

Crampin, S., and S. Peacock. A review of the current understanding of seismic shear-wave splitting in the Earth’s crust and common fallacies in interpretation. Wave Motion, 45. 675–722, 2008.

Chang, C.-H., Y.-M. Wu, T.-C. Shin, and C.-Y. Wang. Relocation of the 1999 Chi-Chi Earthquake in Taiwan. Terr. Atmos. Ocean. Sci., 11, 3, 581-590, 2000.

Durand, S., J. P. Montagner, P. Roux, F. Brenguier, R. M. Nadeau, and Y. Ricard. Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake. Geophys. Res. Lett., Vol. 38, L13303, 2010.

Forghani, F., and R. Snieder. Underestimation of body waves and feasibility of surface-wave reconstruction by seismic interferometry. The Leading Edge, 29,7, 790-794, 2010.

Froment, B., M. Campillo, P. Roux1, P. Gouédard, A. Verdel, and R. L. Weaver. Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations. Geophys., 75, 5, SA85-SA93, 2010.

Fukao, Y. Evidence from core-reflected shear waves for anisotropy in the Earth′s mantle. Nature, 309, 695-698, 1984.

Hillers, G., M. Campillo, Y.-Y. Lin, K.-F. Ma, and P. Roux. Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole. J. Geophys. Res., 117, B06301, 2012.

Hung, J.-H., K.-F. Ma, C.-Y. Wang, H. Ito, W. Lin, E.-C. Yeh. Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project. Tectonophys., 466, 307-321, 2009.

Kaneshima, S. Upper bounds of seismic anisotropy in the Tonga slab near deep earthquake foci and in the lower mantle. Geophys. J. Int., 197, 351–368, 2014.

Kuo, B.-Y., C.-C. Chun, and T.-C. Shin. Split S waveforms observed in northern Taiwan: Implications for crustal anisotropy, Geophy. Res. Lett., 21, 1491-1494, 1994.

Landès, M., F. Hubans, N. M. Shapiro, A. Paul, and M. Campillo. Origin of deep ocean microseisms by using teleseismic body waves. J. Geophys. Res., 115, B05302, 2010.

Leary, P.C., Li, Y.-G., and Aki, K. Observation and modeling of fault-zone fracture seismic anisotropy-I. P, SV and SH travel times, Geophys. 1. R. astr. SOC., 91, 461-484, 1987.

Lee, S.-J., K.-F. Ma, and H.-W. Chen. Three-dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake. J. Geophys. Res.111, B11308, 2006.

Lewis, M. A., and P. Gerstoft. Shear wave anisotropy from cross-correlation of seismic noise in the Parkfield pilot hole. Geophys. J. Int., 188,2,626-630, 2010.

Lecocq, T., C. Caudron, and F. Brenguier., MSNoise, a python package for monitoring seismic velocity changes using ambient seismic noise, Seismol. Res. Lett., 85, 3, 2014.

Lin, A. T.-S., S.-M. Wang, J.-H. Hung, M.-S. Wu, and C.-S. Liu. Lithostratigraphy of the Taiwan Chelungpu-Fault Drilling Project-A borehole and its neighboring region, Central Taiwan. Terr. Atmos. Ocean. Sci., 18, 2, 223-241, 2007.

Lin, Y.-Y., K.-F. Ma, and V. Oye. Observation and scaling of microearthquakes from the Taiwan Chelungpu-fault borehole seismometers. Geophys. J. Int., 190, 1, 665-676, 2012.

Lin, W., E.-C. Yeh, H. Ito, T. Hirono, W. Soh, C.-Y. Wang, K.-F. Ma, J.-H. Hung, and S.-R. Song. Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three-dimensional in-situ stress determination. Terr. Atmos. Ocean. Sci. Vol. 18, 2, 379-393, 2007.

Liu, Y., S. Crampin, and I. Main. Shear-wave anisotropy: spatial and temporal variations in time delays at Parkfield, Central California. Geophys. J. Int., 130, 771-785, 1997.

Liu, Y.-F., T.-L Teng, and Y. Ben-Zion. Systematic analysis of shear-wave splitting in the aftershock zone of the 1999 Chi-Chi, Taiwan, earthquake: shallow crustal anisotropy and lack of precursory variations. Bull. Seismol. Soc. Am., 94, 6, 2330-2347, 2004.

Ma, K.-F., Y.-Y. Lin, S.-J. Lee, J. Mori, and E. E. Brodsky. Isotropic events observed with a borehole array in the Chelungpu fault zone, Taiwan. Science, 337, 6093, 459-463, 2012.

Ma, K.-F., H. Tanaka, S.-R. Song, C.-Y. Wang, J.-H. Hung, Y.-B. Tsai, J. Mori, Y.-F. Song, E.-C. Yeh, W. Soh, H. Sone, L.-W. Kuo, and H.-Y. Wu. Slip zone and energetics of a large earthquake from the Taiwan Chelungpu-fault Drilling Project. Nature, 444, 473-476, 2006.

Ma, K.-F., J. Mori, S.-J. Lee, and S.-B. Yu. Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake. Bull. Seismol. Soc. Am., 91, 1069–1087, 2001.

Ma, K.-F., C.-T. Lee, and Y.-B. Tsai. The Chi-Chi, Taiwan earthquake: large surface displacements on an inland thrust fault. E.O.S., 80, 605, 1999.

McNamara D. E., and R. P. Buland Ambient noise levels in the continental United States. Bull Seismol Soc. Am., 94, 4, 1517-1527, 2004.

Miyazawa, M., R. Snieder, and A. Venkataraman. Application of seismic interferometry to extract P- and S-wave propagation and observation of shear-wave splitting from noise data at Cold Lake, Alberta, Canada. Geophys.Vol. 73, 4, D35-D40, 2008.

Nakata, N., and R. Snieder. Time-lapse change in anisotropy in Japan’s near surface after the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett., Vol. 39, L11313, 2012.

Nagaoka, Y., K. Nishida, Y. Aoki, and M. Takeo. Temporal change of phase velocity beneath Mt. Asama, Japan, inferred from coda wave interferometry. Geophys. Res. Lett., Vol. 37, L22311, 2010.

Roux, P., Karim G. Sabra, Peter Gerstoft, and W. A. Kuperman. P-waves from cross-correlation of seismic noise. Geophys. Res. Lett., Vol. 32, L19303, 2005.

Roux, P., K. G. Sabra, W. A. Kuperman, and A. Roux. Ambient noise cross correlation in free space: Theoretical approach. J. Acoust. Soc. Am., 117, 79-84, 2004.

Sabra, K. G., P. Gerstoft, P. Roux, W. A. Kuperman, and M. C. Fehler. Extracting time-domain Green’s function estimates from ambient seismic noise. Geophys. Res. Lett., 32, L03310, 2005.

Saiga, A., Y. Hiramatsu, T. Ooida, and K. Yamaoka. Spatial variation in the crustal anisotropy and its temporal variation associated with a moderate-sized earthquake in the Tokai region, central Japan. Geophys. J. Int., 154, 695-705, 2003.

Shearer, M. P. Introduction to Seismology. Second Edition, Cambridge Univ. Press. New York., 2009.

Shih, X. R., R. P. Meyer, and J. F. Schneider. An automates, analytical method to determine shear-wave splitting. Tectonophys., 165, 271-278, 1989.

Silver, P. G., and W. W. Chan. Shear wave splitting and sub continental mantle deformation. Geophys. J. Res., 96, B10, 16429-16454, 1991.

Snieder, R. Extracting the Green’s function from the correlation of coda waves:A derivation based on stationary phase. Phys. Rev., E 69, 046610, 2004.

Stehly, L., M. Campillo, and N. M. Shapiro. A study of the seismic noise from its long-range correlation properties. J. Geophys. Res., Vol. 111, B10306, 2006.

Suppe, J. A retrodeformable cross section of northern Taiwan. Proc. Geol. Soc. China, 23, 46-55, 1980a.

Suppe, John. Imbricated structure of western foothills belt, south-central Taiwan. Petro. Geol. Taiwan, 17, 1-16, 1980b.

Suppe, J. Mechanics of the mountain building and metamorphism in Taiwan. Geol. Soc. China Mem. 4, 67-89, 1981.

Tanaka, H., W. M. Chen, C. Y. Wang, K. F. Ma, N. Urata, J. Mori, and M. Ando. Frictional heat from faulting of the 1999 Chi-Chi, Taiwan earthquake, Geophys. Res. Lett., 33, L16316, 2006.

Trifunac, M. D., and A. G. Brady. A study of the duration of strong earthquake ground motion. Bull Seismol Soc Am, 65,3, 581–626, 1975.

Wang, C.-Y., C.-L. Li, and H.-C. Lee. Constructing subsurface structures of the Chelungpu fault to investigate mechanisms leading to abnormally large ruptures during the 1999 Chi-Chi earthquake, Taiwan. Geophys. Res. Lett. Vol. 31, 2, L02608, 2004.

Wang, C.-Y., C.-L. Li, and H.-Y. Yen. Mapping the northern portion of the Chelungpu fault, Taiwan by shallow reflection seismics. Geophys. Res. Lett. Vol. 29, 16,37-1, 2002a.

Wang, C.-Y., C.-L. Li, F.-C. Su, M.-T. Leu, M.-S. Wu, S.-H. Lai, and C.-C. Chern. Structural mapping of the 1999 Chi-Chi Earthquake fault, Taiwan by seismic reflection methods. Terr. Atoms. Ocean. Sci. Vol. 13, 3, 211-226, 2002b.

Wang, C.-Y., C.-H. Chang, H.-Y. Yen. An interpretation of the 1999 Chi-Chi Earthquake in Taiwan based on the Thin-skinned thrust model. Terr.Atoms.Ocean. Sci. Vol. 11,3, 609-630, 2000.

Weaver, R. L. Information from Seismic Noise. Science, 307, 5715, 1568-1569, 2005.

Wu, H.-Y., K.-F. Ma, M. Zoback, N. Boness, H. Ito, J.-H. Hung, S. Hickman. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophys. Res. Lett., 34, L01303, 2007.

Wu, Y.-M., Y.-J. Hsu, C.-H. Chang, L. S.-Y. Teng, and M. Nakamura. Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: Insights from comprehensive first motion focal mechanism catalog. Earth and Planetary Sci. Lett., 298, 306–316, 2010.

Yu, S.-B., L.-C. Kuo, Y.-J. Hsu, H.-H. Su, C.-C. Liu, C.-S. Hou, J.-F. Lee, T.-C. Lai, C.-C. Liu, C.-L. Liu, T.-F. Tseng, C.-S. Tsai, and T.-C. Shin. Preseismic deformation and coseismic displacements associated with the 1999 Chi-Chi, Taiwan, earthquake. Bull. Seismol. Soc. Am.,91, 5, 995-1012, 2001.

Yeh, Y.-H., E. Barrier, C.-H. Lin, and J. Angelier. Stress tensor analysis in the Taiwan area from focal mechanisms of earthquake. Tectonophys., 200, 267–280, 2001.

Yue, L.-F., J. Suppe, and J.-H. Hung. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw7.6). J. of Structural Geology, 27.2058-2083, 2005.

Zhang, Z. and S. Y. Schwartz. Seismic anisotropy in the shallow crust of the Loma Preta segment of the San Andreas Fault system. J. Geophys. Res. Vol. 99, No. B5, 9651-9661, 1994.

林彥宇,TCDP井下地震儀 ─ 微地震之觀測與震源特性分析,國立中央大學地球科學學系博士論文,2014。

陳燕玲,藉由推求最小完整規模及分析其時空分布特徵以評估中央氣象局地震觀測網之觀測效能,中央氣象局研究發展專題,95年度研究報告第 CWB95-1A-13號,2006。

吳泓昱,車籠埔斷層於台中大坑井區之物理參數特性及應力場異質性模擬,國立中央大學地球科學學系博士論文,2010。
指導教授 馬國鳳、陳伯飛(Kuo-Fong Ma Po-Fei Chen) 審核日期 2017-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明