博碩士論文 104622603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.145.152.98
姓名 婭妮(Paula Ascaryani Effrianto)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣西南下枋寮盆地天然氣水合物調查同中點集的AVA/AVO模擬、分析和逆推
(AVO/AVA Modeling, Analysis and Inversion of CMP Gathers for Gas Hydrates Investigation in Lower Fangliao Basin, SW-Taiwan)
相關論文
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣東北部外海地震之三維強地動模擬
★ 利用三維有限差分法模擬與分析台北盆地的場址放大效應★ 台北盆地的場址效應放大效應-譜比法應用於強震資料與理論分析的探討
★ 震波走時於台灣三維參考速度模型評估、地震定位及地利地區深部速度構造的研究★ 台灣地區參考莫荷面傾角變化的探討
★ 台灣西南部地殼變形與地震活動相關性研究★ 台灣西南外海多頻道震測之甲烷水合物與海洋精細構造成像研究
★ 透地雷達特性分析應用於油品污染物探測★ 測井資料的分析於兩處海底甲烷冰蘊藏區: 北阿拉斯加埃爾伯特山和墨西哥灣綠色峽谷的實際應用
★ 台灣西南海域下枋寮盆地甲烷水合物之AVO分析★ 台灣南部的體波與表面波波場逆推:應用於TAIGER T4b寬角度折射/反射資料
★ 中國西南陸坡天然氣水合物沈積環境特徵的AVO和淺部構造量化分析★ Pre-Stack Diffraction Stack Depth Migration of Active Source Short-offset Marine and Long-offset Seismic Data
★ 以部分波場逆推及模擬對沿TAIGER T6測線的台灣北部地區進行深部構造成像★ 台灣西南近海Formosa Ridge天然氣水合物和游離氣岩石物理參數估算
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多頻道反射震測測線MGL0908-TST於潛在富含水合物的台灣西南海域枋寮盆地進行調查、探勘,並辨識及標示異常區域。傳統相似 (semblance)速度評估顯示存在海底仿擬反射(BSR)處的下方為低速帶而其上方為高速帶之異常速度分佈。BSR在震測剖面中被廣泛地用來判斷甲烷水合物的存在。該狀態的產生其岩性的改變扮演一個大角色。
以保存震幅進行資料處理流程策略,並量測沿著同中點3541至3700之間各同中點的薄層幾何與相對反射係數(RC)曲線來進行AVO/AVA效應的調查。重合後AVO模擬結果顯示BSR的厚度大約為14公尺。重合前AVO模擬與分析可推估反射係數趨勢,並提供流體變遷的資訊。針對目標異常區域的部份同中點集建立於重合前AVO/AVA模擬的一維速度(Vp、Vs)與密度模型,該模型為逆推初始程序的關鍵。透過AVA模擬,針對特定界面的相對與絕對AVA曲線時,需要進一步細緻化其一維速度與密度模型。相對AVA反應經由量測隨著入射角變化的RC值於海床為0.27至0.1、BSR上方為-0.01至-0.12及BSR下方為0.02至0.18之間取得。而絕對AVA曲線則以所有可能的Vp、Vs與岩石物理參數組合之Zoeppritz近似來計算量測值,亦即其理論的相對AVA。根據擬合和搜索資料點,我們可以估計聲性阻抗(Ip)、彈性阻抗(Ip和Is),並獲得於海床與BSR的上方與下方之間層面更好約束的速度(Vp、Vs)與密度分佈來做為參考。
岩石物理參數可被用來當作重合後聲性阻抗(PoSAInv)與重合前彈性阻抗(PreSEInv) 逆推的初始猜測值。透過疊代修正聲性阻抗(AI)、彈性阻抗(EI)與彈性係數模型後,逆推結果展示出更細緻化的Vp、Vs、密度和Vp/Vs量測值。將細緻化物理參數的空間分佈疊合至震測剖面可進一步用於解釋。另外,逆推解可視為擬井測(pseudo-log),並用於表現含天然氣水合物沉積帶(GHBSZ)、BSR及游離氣帶(FGZ)的地層厚度。此外,逆推後的模型可進一步被重合前AVA校驗。本論文提出量化三個主要地層GHBSZ、BSR及FGZ的厚度值與岩石參數的方法,以及該區域的含天然氣水合物砂岩系統。基於Biot-Gassmann近似,預估含天然氣水合物沉積物的孔隙率和飽和度分別約為40%和26%。故透過本論文提出的方法可以來量測天然氣水合物的潛在賦存量。
摘要(英) Seismic exploration was acquired along Fangliao Basin. The anomalous target zones had been identified along MGL0908-TST line as high potential hydrates concentration. The conventional semblance velocity estimation showed that the anomalous velocity distribution occurred with the presence of low velocity existing below Bottom Simulating Reflectors (BSR) and high velocity above BSR. The presence of methane hydrate is broadly inferred by BSR on the seismic profile. It means that lithology changes play a big role to generate this condition.
The AVO/AVA effect is investigated based on amplitude preservation data processing workflow strategy to measure the effected thin layer geometry along CMP 3541 to 3700 and relative reflection coefficient (RC) curves at different CMP locations. The post-stack AVO modeling suggests that the BSR has a thickness of approximately 14 m. The pre-stack AVO/AVA modeling and analysis determined reflection coefficient trends that provide information about fluid changes. The pre-stack AVO/AVA modeling establishes the 1-D velocities (Vp, Vs) and density (ρ) for some typical CMP gathers along with the anomalous zone. The model is crucial to initiate the inversion procedure. The further AVA modeling through relative and absolute AVA curves at several specified interfaces is necessary to refine the predefined 1-D velocities and density model. The relative AVA responses are measured with RC 0.27 to 0.1 for seafloor, -0.01 to -0.12 for the top of BSR and 0.02 to 0.18 for bottom BSR as a function of incidence angles. The absolute AVA curves calculation measures by computing all possible combination of Vp, Vs, and rock physics parameters based on Zoeppritz approximation, thus representing the relative AVA responses. According to the fitting and searching cluster of data points, we could estimate the acoustic (Ip) and elastic (Ip and Is) impedance and obtain the better-constrained velocities (Vp, Vs) and density distribution of the layer above and below the seafloor, BSR-Top, and BSR-bottom which were used for references.
The rock physics parameters are used as an initial guess values for post-stack acoustic impedance (PoSAInv) and pre-stack elastic impedance (PreSEInv) inversions. The inversion revealed the detail estimations of Vp, Vs, ρ, and Vp/Vs by iteratively refining the acoustic impedance (AI), elastic impedance (EI) and elastic modulus models. The refined spatial distribution of physical properties superimposed on the seismic data are further used for interpretation. In addition, the inverted solutions can be treated as pseudo-log to reveal the thickness of gas hydrate bearing sediment zone (GHBSZ), BSR, and free gas zone (FGZ). Furthermore, the inverted model can be further verified by pre-stack AVA analysis. The proposed approach quantified the thickness and rock properties of three major layers and its potential gas hydrate-bearing sand system within the study area. Those three major layers are the GHBSZ zone, BSR, and FGZ. Based on Biot-Gassmann’s approximation, the predicted porosity and saturation of gas hydrate-bearing sediments are approximately 40% and 26%, respectively. From here thereafter, we can estimate the potential gas-hydrate reserved through proposed approach.
關鍵字(中) ★ 甲烷水合物
★ 海底仿擬反射
★ 振幅隨支距變化分析
★ 振幅隨支距變化合成模擬
★ 振幅的反转随分支而变化
關鍵字(英) ★ Hydrates
★ BSR
★ AVO/AVA Modeling
★ AVO/AVA Analysis
★ AVO Inversion
論文目次 Table of Contents

Abstract ……………………………………………………………….......................................i
Acknowledgment……………………………………………………………………………....ii
Table of Contents………………………………………………………...................................iii
List of Figures……………………………………………………………………………...….vi
List of Tables ……………………………………………………………………………...…..x
Chapter 1 Introduction
1.1. Gas Hydrate ...................................................................................................................1
1.2. Geological Setting…………………………………………………………………… ..3
1.3. Objectives of the Study………………………………………………………………...6
1.4. Overall Thesis Arrangement………………………………………………………… ..6
Chapter 2 AVO Theory, Synthetic Modeling and Tuning Effect Analysis
2.1. AVO/AVA Theory…………………………………………………………………...18
2.1.1. Exact reflection and Transmission Coefficient Equation and Simplifications..18
2.1.2. AVO/AVA Classification………………………………………………….…22
2.1.3. Offset and Angle Dependent Reflection Coefficient………………………....23
2.1.4. Offset to the Angle Domain Conversion and Super Gather Construction.…...24
2.2. AVO/AVA Modeling ……………………………………………………………….. 25
2.2.1. Rock Physics Parameterization……………………………………………… 26
2.2.1.1. Gardner’s Velocity and Density Transform………………………....26
2.2.1.2. Hamilton’s Velocity and Density Relation for Marine Case………. .27
2.2.1.3. Castagna’s Vp to Vs Convertion…………………………………….27
2.2.2. Post-stack AVO Modeling………………...………………………………….28
2.2.3. Pre-stack AVA Modeling……….…………………………………….……...32
2.2.3.1. Pre-stack AVA Modeling of CMP Angle Gather and Searching for Rock Parameters…..………………………………………….……..33
2.3. The Analysis and Interpretation of Post-stack AVO and Pre-stack AVA Modeling results……………………………………………………………………..……....... 35
2.3.1 Post-stack AVO Modeling…………………………………………………...35
2.3.2 Pre-stack AVO Modeling: Relative AVA Curve Fitting and Searching......…37
Chapter 3 Post-stack Data, AVO/AVA Modeling, and Analysis for Initial Guess Model…...63
3.1. Data Description……………………………………………………………………...63
3.1.1. Reflection Characteristic of the BSR Area …………………………………..64
3.1.2. Structure, Lithology and Fault Features Interpretation ………………………64
3.2. Seismic Attributes ……………………………………………………………………68
3.2.1. Complex Trace Analysis: Amplitude, Frequency, Phase ………….................68
3.2.1.1. Instantaneous Amplitude (Reflection Strength) …………………….69
3.2.1.2. Instantaneous Phase …………………………………………………70
3.2.1.3. Instantaneous Frequency ……………………………………………70
3.2.1.4. Filter 15-20-25-30 …………………………………………………..71
3.2.1.5. Seismic Attributes Interpretation ……………………………………72
3.3. AVO Attributes …………………………………………………………………….73
3.3.1. Intercept (A) ………………………………………………………………….73
3.3.2. Gradient (B) ………………………………………………………………….73
3.3.3. Product of Intercept (A) and Gradient (B) ……………………………………73
3.3.4. Derived Attributes Scaled Poisson’s Ratio Change (aA+bB) ………………..74
3.3.5. Seismic AVO Attributes Analysis in the Study Area.………………………..74
3.4. Post-stack AVO Modeling ………………………………………………………….76
3.4.1. The Real Data Examination and Horizon Interpretation …………………….78
3.4.2. Velocity and Density Determination …………………………………………79
3.4.3. The Modeling Analysis and Interpretation …………………..………………80
3.5. Pre-stack AVO Modeling ……………………..…………………………………….82
3.5.1. Data …………………………………………………………………………..82
3.5.2. Initialization of Elastic Impedance (EI) Initial Guess Models ………………..82
3.5.3. Iterative Pre-stack AVO CMP Data Modeling………………..…....…………83
3.6. Pre-stack AVA Modeling: Relative AVA Curve Fitting and Searching Possible Model Parameters …………………………………………………………………………..84
3.6.1. Absolute and Relative Seafloor’s AVA Curves ………………………..……85
3.6.2. Absolute and Relative BSR-Top’s AVA Curves ……………………………..86
3.6.3. Absolute and Relative BSR-Bottom’s AVA Curves …………………………87
3.7. The Elastic Impedance Initial Guess Models (EI-IGM) ……………………………..88
Chapter 4 The Post-stack Acoustic Impedance Inversion (PosAInv), Pre-stack Elastic Impedance Inversion (PreSEInv) and Results Verification
4.1. AVO/AVA Inversion ……………………………………………………………...118
4.1.1. Post-stack Acoustic Impedance Inversion (PoSAInv) ……………………...118
4.1.2. Pre-stack Elastic Impedance Inversion (PreSEInv) …………………………119
4.1.3. The Use of Fixed Constrain for Inversion Algorithm ………………………122
4.2. The Porosity and Saturation of Hydrate Calculation ………………………………123
4.2.1. Biot Gassman’s Equation …………………………………………………...123
4.3. Post-stack Acoustic Impedance Inversion: Analysis and Results …………………125
4.3.1. Post-Stack AI Inversion (PoSAInv) QC Analysis ………………………….126
4.3.2. Results ……………………………………………………………………... 126
4.4. Pre-Stack Elastic Impedance Inversion (PreSEInv) QC Analysis ………………….128
4.4.1. PreSEInv QC Analysis ……………………………………...………………129
4.4.2. Results …………………………………………….. ……………………….131
4.4.3. Pseudo-Log Categorization and PreSEInv Distributions ………………... …132
4.4.4. The Elastic Moduli, Saturation, Porosity and Poisson’s Ratio of Hydrate-Bearing Sediment ………………………………………….. ………………133
4.5. The Verification of PreSEInv Solution ……………………………………………134
4.5.1. The Pre-stack AVA Modeling of PreSEInv Solutions ………..……………134
4.5.2. The Calculated Elastic Properties and References …………………………135
Chapter 5 Discussion, Conclusions……………………………….. ……………………… 161
5.1. Discussions………………………………………………………………………...161
5.2. Conclusions……………………………….……………………………………….168
參考文獻 Aki, K., and Richards, P.G., 1980. Quantitative Seismology, W.H. Freeman and Co.
Bortfeld, R., 1961. Approximation to the reflection and transmission coefficients of plane longitudinal and transverse waves, Geophysical Prospecting, v.9, p. 485-502.
Castagna, J.P., Batzle, M.L., and Eastwood, R.L., 1985. Relationship between compressional-wave and shear-wave velocities in clastic silicate rocks: Geophysics, v.50, p. 571-581.
Castagna, J. P., and H. W. Swan, 1997. Principles of AVO crossplotting, The Leading Edge, 16, no. 4, 337–342.
Chapra, S.C., 2012. Applied numerical method with Matlab for engineers and scientists. University of Tuff.
Chopra, S., and Castagna J.P., 2014. AVO, Society of Exploration Geophysicists.
Chen, Marc-Andre P., M. Riedel, R.D. Hyndman, and S.E. Dosso,, 2007, AVO inversion of BSRs in marine gas hydrate studies: Geophysics, 72, no.2, C31-C43, doi:10.1190/1.2435604.
Chopra, S., and Castagna J.P., 2014. AVO, Society of Exploration Geophysicists.
Dahl T., and Ursin, B., 1991, Parameter estimation in a One-dimensional Anelastic Medium, Journal of Geophysical Research, 96, 20217-20233.
Dirgantara, F., Lin, T. S., Liu, C. S., Mud Diapir Influences on Gas Hydrates, associated Free Gas, and Heat Flows of The Lower Fangliao Basin, Taiwan Accretionary Wedge. Personal Communication. Unpublished.
Draper, N. R., and Smith, H., 1966, Applied Regression Analysis: New York, John Wiley and Sons, 407 p.
Gardner, G.H.F., Gardner, L.W., and Gregory, A.R., 1974, Formation velocity and density – the diagnostic basics for stratigraphic traps: Geophysics, 39, 770-780.
Hamilton, E.L., 1978. Vp/Vs and poisson¡¦s ratio in marine sediments and rocks, J. Acoust Soc Am., 66, 1093-1101
Hampson-Russell Software Services Ltd., n.d, AVO Theory, retrieved from http://www.ipt.ntnu.no/pyrex/stash/avo_theory.pdf.
Hampson D., Russell B, Bankhead B., 2005, Simulatenous inversion of pre-stack seismic data, CSEG National Convention, Canada.
Hilterman, F. J., 2001, Seismic Amplitude Interpretation: 2001 Distinguished Instructor Short Course, Series No.4. SEG, United States.
Holbrook, W.S., Hoskins, H., Wood, W.t., Stephen, R.A., Lizarralde, D., Leg 164 Science Party, 1996. Methane Hydrate and free gas on the Blake Ridge from vertical seismic profiling. Science 273, 1840-1843
Hyndman, R.D., and G.D. Spence, Aseismic study of methane hydrate marine bottom simulating reflectors, J. Geophys. Res., 97, 6683- 6698, 1992.
Koefoed, O., 1955. On the effect of poisson¡¦s ratios of rock strata on the reflect ion coefficients of plane waves, Geophysics, Prosp., 3, 381-387.
Lin, 2010, Geological controls of gas hydrate occurrences and gas hydrate resource assessment, offshore southwest Taiwan (PHD desertation)
Lu HF, Chen H, Chen F, Liao ZL (2009) Mineralogy of the sediments from gas-hydrate drilling sites, Shenhu area, South China Sea. Geol Res South China Sea 20:28–39.
Okaya, D.A., 1995, Spectral properties of the earth’s contribution to seismic resolution, Journal of Geophysics, Vol. 60, No.1 (January-February 1995); P. 241-251.
Ostrander, W.J., 1984. Plane wave reflection coefficients for gas sands at non-normal angles of incidence, Geophysics, 49, 1637–1648.
Partyka, G., Gridley, J., and Lopez, J., 1999, Interpretational applications of spectral decomposition in reservoircharacterization: The Leading Edge, Vol. 18(3), pp. 353-360.
Riedel, M., Novosel, I., Spence, G.D., Hyndman, R.D., Chapman, N.R., Solem, R.C., and Lewis, T., 2006. Geophysical and geochemical signatures associated with gas hydrate–related venting in the northern Cascadia margin. Geol. Soc. Am. Bull., 118(1):23–38. doi:10.1130/ B25720.1
Rutherford, S. R., and R. H. Williams, 1989. Amplitude versus-offset variations in gas sands, Geophysics, 54, no. 6, 680–688.
Russell, B. and Hampson, D., 1991, A comparison of post-stack seismic inversion methods: Ann. Mtg. Abstracts, Society of Exploration Geophysicists, 876-878.
Sen, M.K. and Stoffa, P. L., 1995, Chapter 2: Direct, Linear, and Iterative Linear Inversion. Global Optimization Methods in Geophysical Inversion, Institute of Geophysics, University of Texas, Austin.
Shuey, R.T., 1985. A simplification of the Zoeppritz equations, Geophysics, v.50, p. 609-614.
Taner, M.T., Koehler, F. and Sheriff, R. [1979] Complex seismic trace analysis. Geophysics, 44(6), 1041–1063.
Wang, H.W., 2017, Pre-stack Depth Migrated Section Processing, CSVL, National Central University.
Wang Xiujuan, Wu Shiquo, Guo Yiqun, Yang Shengxiong, Gong Yuehua, 2011. Geophysical Indicators of Gas Hydrate in Northern Continental Margin, South China Sea. Journal of Geological Research Vol. 2011, Article ID 359597. http://dx.doi.org/10.1155/2011/359597
Wang XJ, Hutchinson DR, Wu SG, Yang SX, Guo YQ (2011a) Elevated gas hydrate saturation within silt and silty clay sediments in the Shenhu area, South China Sea. J Geophys Res 116:B05102. doi:10.1029/2010JB007944.
Wang XJ, Wu SG, Lee M, Guo YQ, Yang SX, Liang JQ (2011b) Gas hydrate saturation from acoustic impedance and resistivity logs in the Shenhu area, South China Sea. Mar Petrol Geol 28:1625–1633. doi:10.1016/j.marpetgeo.2011.07.002.
Welayaturromadhona, 2016, Master Thesis: AVO Analysis of Detecting Submarine Gas Hydrate in Lower Fangliao Basin, SW-Taiwan, National Central University.
Widess, M. B., 1973, How thin is a thin bed?: Geophysics, 38, 1176-1180.
Yilmaz Oz. (2001). Chapter 2: Convolution. Seismic Data Analysis.
Yoo, D. G., N. K. Kang, B. Y. Yi, G. Y. Kim, B. J. Ryu, K. Lee, G. H. Lee, and M. Riedel, 2013: Occurrence and seismic characteristics of gas hydrate in the Ulleung Basin, East Sea. Mar. Petrol. Geol., 47, 236-247, doi: 10.1016/j.marpetgeo.2013.07.001.
Yuan T., Spence G.D., Hyndman R.D. 1999. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: amplitude modeling and full waveform inversion. J. Geophysis. Res. 104.1179-1191.
Zoeppritz, K., 1919. Erdbebenwellen VIIIB, On the reflection and propagation of seismic waves Gottinger Nachrichten, I, 66-84.
指導教授 陳浩維(How-Wei Chen) 審核日期 2018-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明