博碩士論文 104622604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:131 、訪客IP:3.138.102.178
姓名 慧美麗(Huynh Mai Ly)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 臺灣中部晚期中新世至更新世二氧化碳 儲集層及蓋層之地層暨礦物組成研究
(A Stratigraphic and Mineralogical Study of the Late Miocene to Pleistocene Reservoir and Seal Rocks for Carbon Storage in Central Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究顯示位於中部台灣的台西盆地中,晚期中新世至更新世的厚砂岩及頁岩,適合地下儲集二氧化碳。具有潛能的二氧化碳封存之儲集層及蓋層,由晚期中新世至更新世之桂竹林層、錦水頁岩及卓蘭層所組成,並出露在三義斷層上盤大甲溪河床。藉由野外露頭研究,可了解地層特徵,包含地層厚度與沉積物粒徑大小。研究結果指出,由關刀山砂岩段、十六分頁岩段及魚藤坪砂岩段所組成的桂竹林層,出露厚度約為319公尺,可成為良好的二氧化碳儲集層;錦水頁岩厚度約為187公尺,可成為良好地蓋層;而下部卓蘭層的厚度約為300公尺。
  我們研究上述地層之礦物及化學組成,研究樣本包含桂竹林層32個、錦水頁岩12個以及卓蘭層10個。岩相分析的結果顯示,主要的二氧化碳儲集砂岩中,顆粒主要以石英(55-60%)、沉積岩岩屑(15-25%)及長石(5-7%)所組成,此外還有一些細粒基質礦物或膠結物(5-10%)。礦物X光繞射分析結果顯示,砂岩主要黏土礦物組成及其比例為伊萊石(30-70%)、綠泥石(20-40%)、高嶺石(20-30%)及混層黏土(0-10%);在錦水頁岩中,主要的黏土礦物組成比例則為伊萊石(20-50%)、綠泥石(25-45%)、高嶺石(15-30%)及混層黏土(0-15%)。此外,藉由X光螢光分析所測量的微量元素結果顯示,岩石樣本中含非常微量(~206 ppm)的可溶性元素(Cu, Co, V, Cr, Sr, Ba, Pb),其總量可忽略不計;其中難以溶解於地層水中的元素(Cd, Zn, Se, Mo)之濃度則更低,介於2.5-110 ppm之間。
  在桂竹林層中,許多層砂岩的厚度大於20公尺,並含有石英、沉積岩屑、長石及細粒基質礦物,為一套良好的二氧化碳儲集層。此儲集層被錦水頁岩所覆蓋,厚度沿大甲溪河床測量約為187公尺。下部卓蘭層的特徵為砂頁岩互層,單層的砂岩厚度達10-15公尺;夾層的頁岩厚度達3公尺,可做為多層蓋岩之二氧化碳封存系統。
摘要(英) Studies show that a few Miocene to Pleistocene pairs of thick sandstone and shale formations of the Taihsi Basin in central Taiwan are suitable for implementing CO2 geosequestration. Potential CO2 reservoir and seal rocks of the Kueichulin Formation, Chinshui Shale and Cholan Formation of late Miocene to early Pleistocene in age are exposed in the hanging wall of the Sanyi Fault and along the Tachia River bed. We investigated the stratigraphic characteristics of the exposed formations, including bed thickness and grain size by establishing a stratigraphic and sedimentologic column on the hanging wall of the Sanyi Fault. Our results show that the Kueichulin Formation, consisting of Kuantaoshan Sandstone Member, Shihliufen Shale Member and Yutingping Sandstone Member, is floored by the Sanyi Fault and reaches ~319 m in thickness. The Chinshui Shale, considered as the main seal rock, is around 187 m thick while the measured lower part of the Cholan Formation is ~300 m in thickness.
We collected 32 samples from the Kueichulin Formation, 12 samples from the Chinshui Shale and 10 samples from the Cholan Formation to study their mineralogical and chemical compositions. Petrographic analyses reveal that the framework grains for the main CO2 reservoir sandstones consist predominantly of quartz (55-60%), sedimentary rock fragments (15-25%) and feldspar (5-7%) in addition to fine-grained matrix minerals or cement (5-10 %). X-Ray Diffraction (XRD) analyses show that predominant clay minerals in sandstones are illite (30-70%), chlorite (20-40%), kaolinite (20-30%) and mixed-layered clays (0-10%). The Chinshui Shale serves as the main seal rocks, whose clay minerals and abundance are as follows, illite (20-50%), chlorite (25-45%), kaolinite (15-30%) and mixed-layered clays (0-15%). Moreover, trace elements from X-Ray Fluorescence (XRF) results reveal that rock samples contain negligible total amount (~206 ppm) of dissolvable elements (Cu, Co, V, Cr, Sr, Ba, Pb). Elements that are not easily dissolved in the formation water, such as (Cd, Zn, Se, Mo) are even less with concentration ranging from 2.5-110 ppm.
Many individual sandstone beds of the Kueichulin Formation are more than 20 m in thickness and contain quartz, sedimentary rock fragments, feldspar and fine-grained matrix minerals, serving as good CO2 reservoirs. The reservoir layer is capped by the Chinshui Shale, a thick succession of seal rock, up to 187 m along the Tachia River. The lower Cholan Formation is characterized by interbedded sandstone and shale layers, with an individual sandstone bed up to 10-15 m thick and an individual shale bed up to 3 m thick, serving as a possible multi-sealing CO2 geosequestration system.
關鍵字(中) ★ 地層
★ 礦物組成
★ 儲集層
★ 蓋層
關鍵字(英) ★ Stratigraphic
★ Mineralogical
★ Reservoir
★ Seal Rocks
論文目次 摘要.............................................................................................................................. i
Abstract ..................................................................................................................... iii
ACKNOWLEDGEMENTS ......................................................................................... v
Contents ..................................................................................................................... vi
List of Figures ..........................................................................................................viii
List of Tables ............................................................................................................... x
Chapter 1 Introduction ................................................................................................. 1
1.1 Preface and Motivation ....................................................................................... 1
1.2 Geological background and geosequestration system .......................................... 3
1.2.1 Kueichulin Formation: Kuantaoshan Sandstone Member, Shihliufen Shale and Yutengping Sandstone Member ...................................................................... 4
1.2.2 Chinshui Shale ............................................................................................. 5
1.2.3 Cholan Formation ......................................................................................... 5
1.3 Literature Review ............................................................................................... 6
1.3.1 Sandstone and clay minerals in Central Taiwan ............................................ 6
1.3.2 The interaction between carbon dioxide and minerals ................................... 7
1.3.2.1 Reactions within the host formation ....................................................... 8
1.3.2.2 Reactions with the cap rock .................................................................... 8
1.3.3 Carbon Capture and Storage (CCS) studies in North and Western Taiwan.... 9
Chapter 2 Methods ..................................................................................................... 18
2.1 Sample location and procedural overview ......................................................... 18
2.2 Rock thin section preparation............................................................................ 18
2.3 X-ray Diffraction (XRD) of whole rock ............................................................ 20
2.4 X-ray diffraction of clay minerals ..................................................................... 22
2.4.1 Clay minerals and ethylene glycol saturated test specimen preparation ....... 22
2.4.2 The identification and analysis of clay minerals.......................................... 24
2.4.3 Semi-quantitative analyses of clay minerals................................................ 262.5 X-ray Fluorescence (XRF) analyses .................................................................. 27
Chapter 3 Results ....................................................................................................... 43
3.1 Petrography Analyses ....................................................................................... 43
3.2 X-ray Diffraction of whole rock........................................................................ 45
3.3 X-ray Diffraction of clay minerals .................................................................... 46
3.4 X-ray Fluorescence analyses ............................................................................. 48
Chapter 4 Discussion ................................................................................................. 72
4.1 Stratigraphy column of Tachia River bed in correlation with CO2 injection potential in Taichung Foreland Basin ..................................................................... 72
4.2 Carbon dioxide migration and trapping mechanism .......................................... 77
Chapter 5 Conclusions ............................................................................................... 83
References ................................................................................................................. 85
Appendix ................................................................................................................... 91
Appendix I: The quantity Δ2θ in clay minerals estimation ...................................... 91
Appendix II: X-Ray Diffraction in whole-rock results ............................................ 94
Appendix III: X-Ray Diffraction of clay mineral results ......................................... 98
Appendix IV: X-Ray Fluorescence result ............................................................. 104
Appendix V: Petrographic images ........................................................................ 121
Appendix VI: Field works .................................................................................... 126
參考文獻 Bachu, S., Gunter, W. D., Perkins, E. H., 1994. Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Conversion and management, 35, 269-279.
Baker, J. C., Bai, G. P., Hamilton, P. J., Golding, S. D., Keene, J. B., 1995. Continental –scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia. Journal of Sedimentary Research, A65, 252-530.
Bailey, S.W., 1980. Summary of Recommendations of AIPEA Nomenclature Committee. Clay Miner. 15, 85-93.
Billets, S., 2006. XRF Technologies for Measuring Trace Elements in Soil and Sediment: EPA Innovative Technology Verification Report.
Castelltort, S., Nagel, S., Mouthereau, F., Lin, A.T., Wetzal, A., Kaus, B., Willett, S.D., Chiang, S.P., Chiu, W-Y., 2011. Sedimentology of early Pliocene sandstones in the south-western Taiwan foreland: Implications for basin physiography in the early stages of collision. Journal of Asian Earth Science 40, 52-71.
Chadwick, R.A., Zweigel, P., Gregersen, U., Kirby, G.A., Holloway, S., Johannessen, P.N., 2004. Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea. Energy 29, 1371-1381.
Chiao, C.H., Shao, K.S., Lee, Y.R., Yu, C.W., Yang, M.W., Lu, C.Y., 2013. Effective storage capacity study in a deep saline aquifer with a young sedimentary basin. Energy Procedia 37, 4612–4619.
Chen, W.-S., Ridgeway, K. D., Horng, C.-S., Chen, Y.-G., Shea, K.-S.and Yeh, M.-G., 2001. Stratigraphic architecture, magnetostratigraphy, and incised-valley systems of the Pliocene-Pleistocene collisional marine foreland basin of Taiwan. Bull. Geol. Soc. Am., 113: 1249-1271.
Chou, J.-T., 1973. Sedimentology and paleogeography of the upper Cenozoic system of Western Taiwan. Soc. Pet. Eng. J., 10(3), 349– 356.
Ennis-King, J., Paterson, L., 2005. Role of Convective Mixing in the long-term Stoarge of Carbon Dioxide in Deep Saline Formations. SPE Annual Technical Conference and Exhibition.
Fischer, S., Liebscher, A., Wandrey, M., the CO2SINK Group, 2010. CO2–brine–rock interaction — First results of long-term exposure experiments at in situ P–T conditions of the Ketzin CO2 reservoir. Chemie der Erde70, 155-164.
Flett, M. A., Gurton, R. M., Taggart, I. J., 2005. Heterogeneous saline formations: long-term benefits for geo-sequestration of greenhouse gases. In: Rubin ES, Keith DW Gilboy CF (eds) Proceedings of 7th international conference on greenhouse gas control technologies, vol I, 501–509.
Folk, R.L., 1959. Practical petrographic classification of limestone: American Association of Petroleum Geologists Bulletin, v. 43, p. 1-38.
Folk, R.L., Andrews, P.B., Lewis, D.W., 1970. Detrital sedimentary rock classification and nomenclature for use in New Zealand. New Zealand Journal of Geology and Geophysics 13, 937-968.
Gaus, I., 2010. Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks: International Journal of Greenhouse Gas Control, v. 4, 73-89.
Gaus, I., Azaroual, M., Czernichowski-Lauriol, I., 2005. Reactive transport modeling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea): Chemical Geology, v. 217, 319-337.
Gunter, W. D., Wiwchar, B., Perkins, E. H., 1997. Aquifer disposal of CO2-rich greenhouse gases: extension of the time scale of experiment for CO2-sequestering reactions by geochemical modeling. Mineralogy and Petrology, 59, 121-140.
Hangx, S. J. T., Spiers, C. J., 2009. Reaction of plagioclase feldspars with CO2 under hydrothermal conditions. Chemical Geology, 265, 88-98.
Ho, C.-S., 1986. An Introduction to the Geology of Taiwan: Explanatory Text of the Geologic Map of Taiwan, 2nd edn. Central Geological Survey, Taipei, Taiwan.
Holtz, M.H., 2002. Residual Gas Saturation to Aquifer Influx: A Calculation Method for 3-D Computer Reservoir Model Construction. SPE Gas Technology Symposium, 30 April-2 May, Calgary, Alberta, Canada.
Hsieh, B.Z., Nghiem, L., Shen, C.H., Lin, Z.S., 2013. Effects of complex sandstone-shale sequences of a storage formation on the risk of CO2 leakage: case study from Taiwan. Int. J. Greenh. Gas Control 17, 376–387.
Hsieh, P.S., Tien, N.C., Lin, C.K., Lin, W., Lu, H.Y., 2017. A multi-sequestration concept of CO2 geological storage: Shale-Sandstone-Basalt system in Northwestern Taiwan. International Journal of Greenhouse Gas Control 64, 137-151.
Jean, J.S., Wang, C.L., Hsiang, H.I., Li, Z., Yang H.J., Jiang, W.T., Yang, K.M., Bundschuh, J, 2015. Experimental investigation of trace element dissolution in formation water in the presence of supercritical CO2 fluid for a potential geological storage site of CO2 in Taiwan. Journal of Natural Gas Science and Engineering 23, 304-314.
Jenkins, R., Gould, R.W., 1995. Quantitative X-Ray Spectrometry, New York, Marcel Dekker, Inc., Practical Spectroscopy.
Johnson, J. W., Nitao, J. J., Knauss, K. G., 2004. Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms, and sequestration partitioning. In: Baines, S. J. & Worden, R. H. (eds) Geological Storage of Carbon Dioxide. Geological Society, London, Special Publications, 233, 107-128.
Johnson, J. W., Nitao, J. J., Steefel, C. I., Knauss, K. G., 2001. Reactive transport modelling of geologic CO2 sequestration in saline aquifers: the influence of intra- aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration. In: Proceedings of the First National Conference on Carbon Sequestration, Washington, DC, May 14-17.
Kao, C.Y., Hong, E., Yu, H.S., Wong, S., 2013. Stratigraphic architecture and lithofacies analysis: Evidence for development of the Pliocene-Holocene Taichung Foreland Basin, Central Taiwan. Terr. Atms. Ocean. Sci., Vol 24, No. 1, 41-58.
Kharaka, Y. K., Cole, D. R., Thordsen, J. J., Kakouros, E., Nance, H. S., 2006. Gas-water-rock interactions in sedimentary basins: CO2 sequestration in the Frio Formation, Texas, USA. Journal of Geochemical Exploration, Vol 89, 183-186.
King, M. B., Mubarak, A., Kim, J. D., Bott, T. R., 1992. The mutual solubilities of water with supercritical and liquid carbon dioxide. Journal of Supercritical Fluids, 5, 296-302.
Koide, H, Tazaki, Y, Noguchi, Y, Nakayama, S, Iijima, M, Ito, K, Shindo, Y., 1992. Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Convers Manage 33 (5–8): 619–626.
LaTour, T.E., 1989. Analysis of rocks using X-ray fluorescence spectrometry: Rigaku Journal, v. 6, 3-9.
Li, C., Tien, N.C., Jen, C.P., Hsieh, P.S., Huang, S.Y., Maggi, F., 2013. Assessment of largescale offshore CO2 geological storage in Western Taiwan Basin. Int. J. Greenh. Gas Control 19, 281–298.
Li, C., Tien, N.C., Zhang, K., Jen, C.P., Hsieh, P.S., Huang, S.Y., Maggi, F., 2013. Assessment of large-scale offshore CO2 geological storage in WesternTaiwan Basin. International Journal of Greenhouse Gas Control 19, 281-298.
Lin, A.T., Watts, A.B., Hesselbo, S. P., 2003. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15 (4), 453-478.
Liu, C.T., Hsieh, B.Z., Chen, I.H., Lin, Z.S., Chen, T.L., 2014. Estimation of CO2 Practical Capacity in Saline Formations. Energy Procedia 63, 5211-5221.
Metz, B., 2005. IPCC Special Report on Carbon Dioxide Capture and Storage., New York, Cambridge University Press for the Intergovermental Panel on Climate Change.
Moore, D.M. and Reynolds, R.C., Clay Minerals and Their X-ray Identification. New York: Oxford University Press, 1989.
Moore, D.M. and Reynolds, R.C., X-Ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press, 1997.
Nagel, S., Castelltort, S., Garzanti, E., Lin, A.T., Willett, S.D., Mouthereau, F., Limonta, M., Adatte, T., 2014. Provenance evolution during arc-continent collision: Sedimentary petrography of Miocene to Pleistocene sediments in the Western Foreland Basin of Taiwan. Journal of Sedimentary Research, v.84, 513-528.
Nagel, S., Castelltort, S., Wetzal, A., Willett, S.D., Mouthereau, F., Lin, A.T., 2013. Sedimentology and foreland basin paleogeography during Taiwan arc continent collision. Journal of Asian Earth Science 62, 180-204.
Norden, B., Forster, A.,Vu-Hoang, D., Marcelis, F., Springer, N., LeNir, I., 2010. Lithological and petrophysical core-log interpretation in the CO2SINK, the European CO2 onshore research storage and verification project.SPE Reserv. Evaluat. Eng.13(2), 179–192.
Omole, O., Osoba, J. S., 1983. CO2-dolomite rock interaction during CO2 flooding process. In the 34th annual meeting of the petroleum society of CIM, Canada.
Pettijohn, F.J., Potter, P.E. & Siever, R., 1987. Sand and Sandstone. Springer-Verlag, New York.
Rochelle, C.A., Czernichowski-Lauriol, I., Milodowski, A.E., 2004. The impact of chemical reactions on CO2¬ storage in geological formations: a brief review. Geological Society London Special Publications, 233, 87-106.
Semere Solomon., 2006. Criteria for Intermediate Storage of Carbon Dioxide in Geological Formations.
Shaw, C. L., 1996. Stratigraphic correlation and isopach maps of the Western Taiwan Basin. Terr. Atmos. Ocean. Sci. 7, 333–360.
Shiraki, R., Dunn, T. L., 2000. Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA, Appl. Geochem., 15, 265-279.
Tien, N.C., Laio, C.W., Tong, L.T., 2013. Modeling of carbon dioxide plume migration for saline aquifer in Northern Taiwan. Energy Procedia 31, 3825–3832.
Wilson M. J. 1987. A Handbook of Determinative Methods in Clay Mineralogy. Chapman and Hall, New York.
Yue, L.F., Suppe, J., Hung, J.H., 2005. Structural geology of a classic thrust belt earthquake: the 1999 Chi-Chi earthquake Taiwan (Mw=7.6). Journal of Structural Geology, 1-26.
指導教授 林殿順 張午龍(Tien-Shun Lin Wu-Lung Chang) 審核日期 2018-1-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明