博碩士論文 104623011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.236.232.99
姓名 段儀(Yi Duann)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 自地面觀測氣輝反演氧原子離子光化學模型
(Photochemical model for atomic oxygen ion retrieval from ground-based observations of airglow)
相關論文
★ 電離層赤道異常區之電子濃度季節性震盪及日變化★ Development and Validation of an Airglow Photometer for Upper Atmospheric Chemistry
★ Tidal Variability Due to the Quasi-Biennial Oscillation and Ionospheric Responses★ 福衛三號S4閃爍指數時空變化與潮汐分析
★ 飛鼠號立方衛星電力次系統設計★ 支援飛鼠號立方衛星之S頻段地面站評估及整測
★ 福衛五號軌道推算軟體敏感度及飛行資料分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 欲了解中高層大氣之結構與運動模式,我們可以自離子的光化學反應著手進行探討。分布於中高層大氣F層的氧原子離子於能階躍遷的過程中,釋放出的可見光波段為630.0奈米,我們利用團隊共同架設之光度計(Photometer)系統,於夜晚的鹿林山天文台(23.46°N, 120.87°E)觀測台灣上空之氣輝,每10分鐘自光子計數器取一筆平均數據,以及俄羅斯伊爾庫茨克(51.8°N, 103.1°E)日地物理研究所之2016全年夜間氣輝地面觀測資料。並參考Link和Cogger. (1988)、Sobral et al. (1993),以及Vladislav et al. (2008) 的現有理論,建立光化學模型進行反演,可得氧原子濃度隨高度與時間的改變,並且與福衛三號之衛星觀測資料進行比對,以此方法進行長期觀測後,了解全年變化模式。於本篇論文中,吾人採用由Solomon (2017) 所開發之氣輝模型GLOW第0.98版,產生以瑞利為單位的氣輝亮度,結合GLOW本身使用的IRI-90背景參數,來驗證此三個模型的逆向推導效果。

本團隊所演算之氧原子離子密度變化及趨勢,與福衛三號電子密度觀測結果、地面站觀測之氣輝輻射率,以及GLOW模型輸入之變數進行比較,其中異同均於本文中被討論。本團隊研發之逆推模型所解析的氧原子離子變化趨勢,在不遠的未來可望被使用於更廣泛的電離層組成變化分析。
摘要(英) To study the chemistry and composition of the upper atmosphere, we can utilize airglow emissions from the photochemical reactions of the ions in this region. When the atomic oxygen ions distributed in the ionospheric F region experience an energy level transition, visible light with a wavelength of 630.0 nm is released. We used the photometer system built by our team at NCU to perform ground-based observations of airglow over the sky of Taiwan at Lulin Observatory (23.46°N, 120.87°E) during selected night times. Ground-based airglow spectrometer observations throughout 2016 from the Institute of Solar-Terrestrial Physics (ISTP) in Irkutsk, Russia (51.8°N, 103.1°E) are also utilized. [22] We combined the mean values of our observations every 10 minutes with photochemical models based on the formulas derived from the theories of Link and Cogger (1988), Sobral et al. (1993), and Vladislav et al. (2008). With these different methods, we can estimate how the density of oxygen atomic ions varies with time and altitude and compare the results from empirical models with satellite-based observation data from FORMOSAT-3/COSMIC. The airglow brightness values simulated (Unit: volume emission rate) by the empirical GLOW model v0.98 by Solomon (2017) are also applied to validate the effectiveness of the three inversion models used in this research.
The tendency and variation of the atomic oxygen ion density calculated by our photochemical models is compared to the ground-based time variation of airglow radiance, electron density observations of FORMOSAT-3/COSMIC, and input variables from GLOW. Similarities and differences are discussed. The pattern of atomic oxygen ion variation resolved by our inversion model will be utilized for further analysis of ionospheric composition variation in the future.
關鍵字(中) ★ 大氣輝光
★ 氧原子離子
★ 光化學模型
關鍵字(英) ★ Airglow
★ Atomic Oxygen Ion
★ Photochemical Model
論文目次 摘要 vi
Abstract vii
誌謝 viii
Acknowledgment x
List of Figures xii
List of Tables xiv
List of Equations xv
Chapter 1 Introduction 1
Chapter 2 Observation and Data 4
2.1 NCU Lulin Observatory 4
2.2 2016 Spectrograph Data from Irkutsk, Russia 6
2.3 Empirical Models: IRI-2012 and MSIS-E-90 8
2.4 FORMOSAT-3/COSMIC Ne data 8
2.5 GLOW Model v0.98 9
Chapter 3 Photochemical Models 10
3.1 V630.0 Data Analysis 10
3.2 OII Models 12
3.3 Comparison and Validation 15
Chapter 4 Results 22
4.1 2016 Whole year variation 22
4.2 Daily Variation 26
Chapter 5 Discussion 34
Chapter 6 Conclusions 37
Bibliographies 39
Appendix A: 2016 Irkutsk Daily [O+] Variations 41
參考文獻 [1] Seargent, D. A. (2012). Weird weather: Tales of astronomical and atmospheric anomalies (1 ed.). New York: Springer-Verlag. doi:10.1007/978-1-4614-3070-4
[2] Russian Camera Lenses TOP35MM, MC MTO 11 (CA) 10/1000 mirror meniscus russian lens for Nikon. http://top35mm.com/MC-MTO-11-(CA)-10-1000-mirror-meniscus-russian-lens-for-Nikon
[3] Adachi, T., M. Yamaoka, M. Yamamoto, Y. Otsuka, H. Liu, C.‐C. Hsiao, A. B. Chen, and R.‐R. Hsu (2010). Midnight latitude‐altitude distribution of 630 nm airglow in the Asian sector measured with FORMOSAT‐2/ISUAL, J. Geophys. Res., 115, A09315, doi:10.1029/2009JA015147.
[4] Chang, L. C., C.-H. Lin, J. Yue, J.-Y. Liu, and J.-T. Lin (2013). Stationary planetary wave and nonmigrating tidal signatures in ionospheric wave 3 and wave 4 variations in 2007–2011 FORMOSAT-3/COSMIC observations, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50583.
[5] Beletsky, A. B., N.M. Grudinin, Yu.S. Karavaev, N.V. Kostyleva, V.A. Lukin, A.V. Mikhalev, M.A (2003). Chernigovskaya Optical observation results of mid-latitude auroras (MA) in the ISTP SB RAS Geophysical Observatory in the Eastern-Siberia south region (520N, 1030 E) during strong geomagnetic storms in October 29–31and November 20–21.
[6] Labitzke, K., J. J. Barnett, and B. Edwards (eds.) (1985). Handbook MAP 16, SCOSTEP, University of Illinois, Urbana.
[7] Hedin, A. E. (1991). Extension of the MSIS Thermospheric Model into the Middle and Lower Atmosphere, J. Geophys. Res. 96, 1159.
[8] Bilitza, D., D. Altadill, Y. Zhang, C. Mertens, V. Truhlik, P. Richards, L.-A. McKinnell, and B. Reinisch (2014). The International Reference Ionosphere 2012 - a model of international collaboration, J. Space Weather Space Clim., 4, A07, 1-12, doi:10.1051/swsc/2014004.
[9] Stanley, C. S. (2017). Global Modeling of Thermospheric Airglow in the Far-Ultraviolet, J. Geophys. Res., Space Physics, 122, doi:1002/2017JA024314.
[10] Rajesh, P. K., J Y Liu, C H Lin, A B Chen, R R Hsu & H T Su. (2012). “Airglow observation over equatorial and low-latitudes in the extreme solar minimum of 2007-2008”. Indian Journal of Radio & Space Physics. Vol 41, April 2012, pp. 148-154.
[11] Khomich, V. Y., A. I. Semenov, N. N. Shefov (2008). Airglow as an Indicator of Upper Atmospheric Structure and Dynamics. Springer-Verlag Berlin Heidelberg. ISBN: 978-3-540-75832-7.
[12] Link, R., L. L. Cogger (1988). A reexamination of the OI 6300 °A nightglow. J Geophys Res 93A:9883–9892
[13] Link, R., L. L. Cogger (1989). Correction to “A reexamination of the OI 6300 °A nightglow” by R. Link and L.L. Cogger. J Geophys Res 94A:1556
[14] Sanjay, K., E. L. Tan, S. G. Razul, S. S. Chong Meng and D. Siingh (2014). Validation of the IRI-2012 model with GPS-based ground observation over a low-latitude Singapore station. Earth, Planets and Space, 66:17.
[15] Sakai, J., K. Hosokawa, S. Taguchi, and Y. Ogawa (2014). Storm time enhancements of 630.0 nm airglow associated with polar cap patches, J. Geophys. Res. Space Physics, 119, 2214–2228, doi:10.1002/2013JA019197.
[16] J. E. van Zyl (1996). Unveiling the Universe: An Introduction to Astronomy. Springer-Verlag London. ISBN: 978-1-4471-1037-8. DOI: 10.1007/978-1-4471-1037-8.
[17] Church, D. A. (1993). Collision measurements and excited-level lifetime measurements on ions stored in Paul, Penning and Kingdon ion traps. Physics Reports, Volume 228, Issue 5-6, p. 253-358, doi: 10.1016/0370-1573(93)90030-H.
[18] Fong, C. J., W.T. Shiau, C. T. Lin, T. C. Kuo, C. H. Chu, S. K. Yang, Nick L. Yen, S. S. Chen, Y. H. Kuo, Y. A. Liou, and S. Chi (2008). Constellation Deployment for the FORMOSAT-3/COSMIC Mission. IEEE Transactions on Geoscience and Remote Sensing, VOL. 46, NO. 11, doi: 10.1109/TGRS.2008.2005202.
[19] Krasovskij, V. I. & Šefov, N. N. (1964). Airglow. Space Science Reviews, Volume 4, Issue 2, pp.176-198, 1965SSRv....4..176K.
[20] Garanin, S. G., L. I. Zykov, A. N. Klimov, S. M. Kulikov, S. P. Smyshlyaev, V. V. Stepanov, and A. Yu. Syundyukov (2017). Daily observation of weak (7m–8m) stars brightness with plain terrain.Optical Journal, No.12.
[21] Mikhalev, A. V., V. V. Khakhinov, A. B. Beletskii, and V. P. Lebedev (2016). Optical Effects of the Operation of the Onboard Engine of the Progress M-17M Spacecraft at Thermospheric Heights. Cosmic Research, 54:105–110. doi: 10.1134/S0010952516020039.
[22] Federal State Budgetary Institute of Science Institute of Solar-Terrestrial Physics, Siberian Branch of the Russian Academy of Sciences, 664033, Irkutsk, ul. Lermontova 126A.The equipment of Center for Common Use — Angara (Founded in 2003), 2016. http://ckp-angara.iszf.irk.ru/html/history.html
[23] Karen C. Fox (2011). Solar Cycle Primer, NASA’s Goddard Space Flight Center, Greenbelt, Md. Image Credit: NASA/MSFC.
[24] A. E. Hedin, J. E. Salah, J. V. Evans, C. A. Reber, G. P. Newton, N. W. Spencer, D. C. Kayser, D. Alcayde, P. Bauer, L. Cogger, and J. P. McClure (1977). A global thermospheric model based on mass spectrometer and incoherent scatter data, J. Geophys. Res., 82, 2139-2156.
[25] Chang, L.C., C.-H. Lin, J.-Y. Liu, B. Nanan, J. Yue, and J.-T. Lin (2013), Seasonal and Local Time Variation of Ionospheric Migrating Tides in 2007-2011 FORMOSAT-3/COSMIC and TIE-GCM Total Electron Content, J. Geophys. Res. Space Physics, 118, doi:10.1002/jgra.50268.
指導教授 張起維(Loren C. Chang) 審核日期 2018-5-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明