博碩士論文 104624002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:34.239.176.198
姓名 何佑婕(Yu-Chieh Ho)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 受限制速率吸附影響下之多物種溶質傳輸解析解模式
(Analytical model for multispecies transport subject to rate-limited sorption)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2022-7-31以後開放)
摘要(中) 多物種解析解模式對於了解地下水中污染物之移動情形是有效的模擬工具,尤其是對於移動過程中會產生序列降解反應之有害物質,如含氯有機溶劑、放射性物質、殺蟲劑及農藥等;但多物種解析模式有其技術上的困難,在過去研究中並不常見。前人所提出的多物種解析模式皆使用瞬間平衡吸附之假設,此假設簡化了污染物在溶解相和吸附相之間的交換反應。然而,從過去文獻可以發現,限制速率吸附作用對於溶質傳輸有很大的影響,若將瞬間平衡吸附之假設套用在每個情況,則所得之污染物濃度分布情形及評估整治時間的結果會出現明顯的誤差。本研究之目的為發展限制速率吸附影響下之多物種溶質傳輸解析模式,以探討限制速率吸附對多物種溶質傳輸之影響。溶質傳輸方程式分別對第一類及第三類邊界條件進行求解,其解析解與數值解所得之結果非常吻合。透過吸附速率之敏感度分析,發現使用瞬間平衡吸附之假設會低估污染物的濃度,且隨著吸附速率越小所得之濃度也會越高。
摘要(英) Analytical models for multiple advection-dispersion equations sequentially coupled with first-order decay reactions provide fast and cost-effective tools for simulating the plume behavior of the parent and daughter species of decaying contaminants such as radionuclides, dissolved chlorinated solvents and nitrogen chain. However, only a few analytical solutions for coupled multispecies transport equations have been described in the literature. For mathematical simplification, all of the developed analytical models currently used to simulate migration of the decaying contaminants assume instantaneous equilibrium sorption between contaminants in the dissolved and sorbed phases. However, experimental and theoretical research results have indicated that rate-limited sorption could have a profound effect upon solute transport in the subsurface environment. By making the instantaneous equilibrium sorption assumption, the potentially significant impact of the rate-limited sorption cannot be considered or subjected to examination. In this study, we present an analytical model for describing the coupled multispecies transport of decaying contaminants subject to a rate-limited sorption process. The equations are solved for both the first-type and third-type inlet boundary condition. The newly derived analytical solutions are tested against the numerical solutions generated using the Laplace transform finite difference method. The comparison shows excellent agreement with the numerical solutions, demonstrating the correctness of the developed analytical model and the associated computer code. The solutions are then used to assess the influence of the rate-limited sorption on the coupled multispecies transport of the decaying contaminants. Results show that simulations using rate-limited models predict higher concentrations than those obtained with the equilibrium-controlled model.
關鍵字(中) ★ 多物種
★ 吸附
★ 移流延散方程式
★ 溶質傳輸
★ 解析解
關鍵字(英) ★ multispecies
★ sorption
★ advection-dispersion equation
★ solute transport
★ analytical solution
論文目次 1 Introduction 1
1.1 Motivation 1
1.2 Literature review 4
1.3 Research Objectives 9
2 Methodology 11
2.1 Mathematical model 11
2.2 Solution derivation 18
3 Results and discussion 25
3.1 Convergence behavior of the derived solution 25
3.2 Verification 34
3.3 Effect of the kinetic sorption rate coefficientβ 38
3.4 Effect of inlet boundary condition 44
4 Conclusions 47
References 49
參考文獻

Aziz, C.E., Newell, C.J., Gonzales, J.R., and Jewett, D.G., “BIOCHLOR Natural Attenuation Decision Support System User′s Manual Version 1.0.”, U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 2000.
Ball, W. P., Equilibrium sorption and diffusion rate studies with halogenated organic chemical and sandy aquifer material”, Ph.D. dissertation, pp.356, Stanford Univ., Stanford, Calif., 1989.
Batu, V., “A generalized three-dimensional analytical solute transport model for multiple rectangular first-type sources”, J. Hydrol., Vol. 174 (1-2), pp.57-82, 1996.
Bear, J., “Analysis of flow against dispersion in porous media — Comments”, Journal of Hydrology, Vol. 40(3-4), pp. 381-385, 1979.
Brusseau, M. L., Larsen, T., and Christensen T.H., “Rate-limited sorption and nonequilibrium transport of organic chemicals in low organic carbon aquifer materials”, Water Resources Research, Vol. 27(6), pp. 1137-1145, 1991.
Brusseau, M. L., and P.S. C. Rao, “Sorption nonideality during organic contaminant transport in porous media”, CRC Crit. Rev. Environ. Control, Vol. 19(1), pp. 33-99, 1989a.
Clement, T. P., “RT3D—A modular computer code for simulating reactive multi-species transport in 3-dimensional groundwater aquifers”, Battelle Pacific Northwest National Laboratory, PNNL-SA-28967, 1997.
Clement, T. P., “Generalized solution to multispecies transport equations coupled with a first-order reaction-network”, Water Resour. Res., Vol. 37(1), pp. 157–163, 2001.
Clement, T. P., Gautam T. R., Lee, K. K., Truex, M. J., and Davis, G. B., “Modeling of DNAPL-Dissolution, Rate-Limited Sorption and Biodegradation Reactions in Groundwater Systems”, Bioremediation Journal, Vol. 8(1-2), pp. 47-64, 2004.
Chen, C.S., “Analytical and Approximate Solutions to Radial Dispersion From an Injection Well to a Geological Unit With Simultaneous Diffusion Into Adjacent Strata”, Water Resources Research, Vol. 21(8), pp. 1069-1076, 1985.
Chen, J. S., Ni, C. F., Liang, C. P., and Chiang C. C., “Analytical power series solution for contaminant transport with hyperbolic asymptotic distance-dependent dispersivity”, Journal of Hydrological, Vol. 362, pp. 142–149, 2008a.
Chen, J. S., Ni, C. F., and Liang, C. P., “Analytical power series solutions to the two dimensional advection–dispersion equation with distance-dependent dispersivities”, Hydrological Processes, Vol. 22(24), pp. 4670–4678, 2008b.
Chen, J. S., Chen, J. T., Liu, C.W., Liang, C.P., and Lin, C. W., “Analytical solutions to two-dimensional advection–dispersion equation in cylindrical coordinates in finite domain subject to first- and third-type inlet boundary conditions”, J. Hydrol., Vol. 405, pp. 522–531, 2011.
Chen, J. S., Lai, K. H., Liu, C.W., and Ni, C. F., “A novel method for analytically solving multi-species advective-dispersive transport equations sequentially coupled with first-order decay reactions”, J. Hydrol., Vol. 420–421, pp. 191–204, 2012a.
Chen, J. S., Liu, C.W., Liang C. P., and Lai, K. H., “Generalized analytical solutions to sequentially coupled multi-species advective–dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition”, J. Hydrol., Vol. 456–457, pp. 101–109, 2012b.
Chen, J. S., Liang, C. P., , Liu, C.W. and Li, L. Y., “An analytical model for simulating two-dimensional multispecies plume migration”, Hydrol. Earth Syst. Sci., Vol. 20, pp. 733–753, 2016.
Cho, C. M., “ Convective transport of ammonium with nitrification in soil”, Can. J. Soil Sci., Vol. 51, pp. 339–350, 1971.
de Hoog, F. R., Knight, J. H., Stokes, A. N., “An improved method for numerical inversion of Laplace transforms”, SIAM J. Sci. Stat. Comput. 3 (3), pp. 357–366,1982.
Domenico, P. A., “An analytical model for multidimensional transport of a decaying contaminant species”, J. Hydrol., Vol. 91, pp. 49-58, 1987.
Gao, G., Zhan, H., Feng, S., Fu, B., Ma, Y., and Huang G., “A new mobile-immobile model for reactive solute transport with scale-dependent dispersion”, Water Resources Research, Vol. 46(8), W08533, doi: 10. 1029/2009WR008707, 2010.
Goltz, M. N., and P. V. Roberts, “Simulations of physical solute transport models: Application to a large-scale field experiment”, J. Contain. Hydrol., Vol.3(1), pp. 37-63, 1988.
Goltz M. N., and Oxley M.E., “Analytical Modeling of Aquifer Decontamination by Pumping When Transport is Affected by Rate-Limited Sorption”, Water Resources Research, Vol. 27(4), pp. 547-556, 1991.
Haggerty, R., and Gorelick, S. M., “Design of multiple contaminant remediation: Sensitivity to rate-Limited mass transfer”, Water Resources Research, Vol. 30, pp. 435-446, 1994.
Hunt, B., “Dispersive Sources in Uniform Ground-Water Flow”, Journal of the Hydraulics Division, Vol. 104(1), pp. 75-85, 1978.
Lunn, M., Lunn. R. J., and Mackay, R., “Determining analytic solution of multiple species contaminant transport with sorption and decay”, J. Hydrol., Vol. 180, pp. 195–210, 1996.
Moridis, G.J. and Reddell. D. L., “The Laplace transform finite difference method for simulation of flow through porous media”, Water Resources Research, Vol. 27(8), pp. 1873–1884, 1991.
Nkedi-Kizza, P., P.S. C. Rao, R. E. Jessup, and J. M. Davidson, “Ion exchange and diffusive mass transfer during miscible displacement through an aggregate oxisol”, Soil Sci. Soc. Am. J., Vol. 46, pp. 471-476, 1982.
Pérez Guerrero, J. S. and Skaggs, T. H., “Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients”, J. Hydrol., Vol. 390, pp. 57–65, 2010.
Quezada, C. R., Clement, T. P., and Lee, K. K., “Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors”, Adv. Water Res., Vol. 27, pp. 507–520, 2004.
Srinivasan, V. and Clememt, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part I: Mathematical derivations”, Adv. Water Resour., Vol. 31, pp. 203–218, 2008a.
Srinivasan, V. and Clememt, T. P., “Analytical solutions for sequentially coupled one-dimensional reactive transport problems-Part II: Special cases, implementation and testing”, Adv. Water Resour., Vol. 31, pp. 219–232, 2008b.
Sun, Y., Peterson, J. N., and Clement, T. P., “A new analytical solution for multiple species reactive transport in multiple dimensions”, J. Contam. Hydrol., Vol. 35, pp. 429–440, 1999.
van Genuchten, M., and P. J. Wierenga, “Mass transfer studies in sorbing porous media, I, Analytical solution”, Soil Sci. Soc. Am. J., Vol. 40, pp. 473-479, 1976.
van Genuchten, M. T. and Alves, W. J., “Analytical solutions of the one-dimensional convective-dispersive solute transport equation”, US Department of Agriculture Technical Bulletin, No. 1661, pp. 151, 1982.
van Genuchten, M. T., “Convective–dispersive transport of solutes involved in sequential first-order decay reactions, Comput. Geosci., Vol. 11, pp. 129–147, 1985.
Wilson, J. L., and Miller, P. J., “Two-dimensional plume in uniform groundwater flow: Journal of the Hydraulics Division”, Vol. 104, pp. 503-514, 1978.
Yates, M. V., and Yates, S. R., “Modeling microbial fate in the subsurface environment”, CRC Critical Reviews in Environmental Control, Vol. 17, pp. 307–344, 1986.
Zhan, H., Zhang, W., and Gao, G., “An analytical solution of two-dimensional reactive solute transport in an aquifer-aquitard system”, Water Resour. Res. 45, W10501. doi:10.1029/2008WR007479, 2009.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2017-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明